

EXAMINING CHANGES IN ARCTIC PLANT ASSEMBLAGES: PAST, PRESENT, AND FUTURE

Mary S. Wisz, Loïc Pellissier, Lærke Stewart + collaborators

VERSITE

OUTLINE: MODELLING CHANGE IN ARCTIC PLANT COMMUNITIES

- Big Questions: Climate, history, biotic interactions, and dispersal
- > Emerging data and collaboration
- > Greenland, North America, Eurasia
- > Tools for solutions?
- SDM, structural equation models, mechanistic models
- Modelling patterns and processes; past present and future
- > PhD project (Lærke)
- > Post doc (Loïc)

Temperature

UNDERSTANDING AND PREDICTING CHANGES IN ARCTIC ECOSYSTEMS...

Caribou

Simonsen et al. 2011

QUESTIONS: GREENLAND (REGIONAL SCALE AND BEYOND?)

Turnover: Which places and which groups of species will/ have experience/d the most/ least change? Consider:

- > history, glaciation
- > origin of species' pools
- > velocity of climate change
- > functional groups
- > dispersal strategy
- > ?

Bay: phytogeographic origins Greenland's flora

WHAT SHAPES SPECIES ASSEMBLAGES?

How do we quantify these relationships?

Wisz et al in Press Biological Reviews

USING SPECIES DISTRIBUTION MODELLING TO PREDICT CURRENT AND FUTURE PLANT DISTRIBUTION

Communities

Accounting for:

- Biotic interactions
- Dispersal
- Disturbances

SDM APPLICATIONS

- > Scenarios
- Diversity and richness patterns
- > Turnover
- > Role of functional groups
- › Dispersal
- > Historical events (glaciation, etc)
- > Species' invasions
- > Many, many others

CANDIDATE PREDICTOR VARIABLES

> Predictors

- Temperature
- > Precipitation + winter precipitation
- > Solar radiation
- Potential evapotranspiration
 Terrain (DEM elevation, slope, aspect)
 NDVI, NDWI, Snow (250 M)
- > Bedrock
- Large mammals (caribou, muskox)

Scenarios

- > (DMI- Greenland) 25 km assuming 2 scenarios of glacial melt
- > IPCC
- > Historical

DERIVATIVES/COMBINATIONS OF THESE RELAVANT FOR VEGETATION?

DESIGNING RELEVANT PREDICTORS FOR ARCTIC PLANT

Journal of Biogeography (J. Biogeogr.) (2011) 38, 406–416

Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming

Daniel Scherrer* and Christian Körner

Should 2-m air temperature or more proximal temperature (e.g. 5cm aboveground) be used?

DESIGNING RELEVANT PREDICTORS FOR ARCTIC PLANTS USING

a) NERO,vegetationtransect, Nuuk, GL

b) Design applied in the Swiss Alps

VEGETATION DATA

- Details in this workshop
- > Daniels Data
- Bay
- > IAVD collaborators?
- > CBIONET collaborators?
- > Others?

Global Change Biology

Global Change Biology (2011) 17, 2330-2341, doi: 10.1111/j.1365-2486.2010.02393.x

21st century climate change threatens mountain flora unequally across Europe

But what about Greenland?

ARCTIC PLANT COMMUNITY MODELLING PHD PROJEC

- > Lærke Stewart, Aarhus University
- > (February 2012-January 2016) MS on the way:

> Funding: Greenland Climate Research Centre (500K), Greenland Ecosystem Monitoring (250K), NERI (250K) + AU (400K)

> Supervisors:

Mary S. Wisz (main)

Mads C. Forchhammer

Jens-Christian Svenning

 Key-collaborators: Bay, Schmidt, Guisan Group UNIL, Skip Walker-IAVD, Daniels, Miska Luoto and hopefully others

- Coordinate effort with Daniels, Walker, IAVD, etc
- Collate existing information: recent past + contemporary.
- Data sources: Daniëls, CAFF, GEM, GBIF, ITEX, Back to the Future etc.
 - Locations and functional traits

Fieldwork and training

Picture: arctic.ac.uk, modified by Stewart

Predicting contemporary distributions of plant species and assemblages in Greenland

- > SDM methods
- > Combining monitoring and biodiversity data
- New methods
- > Herbivore distributions

- How has glaciation and climate change shaped plant assemblages in Greenland for different species pools?
- SDM based on contemporary data predicted to historical scenarios
- Comparing historical, contemporary and future species assemblages in Greenland
- Stability + resilience of species, functional groups (e.g. source pools, dispersal or reproductive strategies) & habitats
- > Comparing future scenario modelling results with ITEX warming experiments

How has circumpolar glaciation history since LGM influenced plant assemblages?

- Compare vegetation data to historical scenarios
- > Which functional groups, dispersal strategies, etc predominate in a given region depending on velocity of climate change and glacial history?
- > Multivariate stat analyses/SDM?

Picture: Lomolino et al. 2010

CONCLUSION

- The biggest challenge is preparing the vegetation data. These must be harvested in the most efficient way
- > how we can we contribute to the IAVD? Discuss Day 3
- > Flexible approach to project. Suggestions?
- > Ecological and biogeographic questions are big but realistic progress can be made once the data are available