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Major goal of the Greening of the Arctic project:

Link spatial and temporal trends of vegetation greenness observed on
AVHRR satellite images to ground observations along both transects.
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Field studies along two 1800-km Arctic transects
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* North America Arctic

Transect: 2002-2006
Biocomplexity of Arctic
Patterned Ground Ecosystems
Project (NSF).

 Eurasian Arctic Transect:

2007-2010, Greening of Arctic
(NASA).

* Both transects through all five
Arctic bioclimate subzones.

Bioclimate Subzones

Sub-

Zone MJT (°C) Shrubs
1-3 none
3-5 prostrate
5-7 hemi-prostrate
7-9 erect dwarf
9-12 low




1-km AVHRR-NDVI patterns for the Arctic along the two
transects
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Variation in climate and vegetation along the transects

Summer Warmth Index (AVHRR) Vegetation (CAVM Team 2003)
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Zonal vegetation along both transects

Eurasia Transect
A - Hayes Island B - Ostrov Belyy C — Kharasavey D - Vaskiny Dachi E - Labo

A - Isachsen B- Mould Bay C - Green Cabin D - Sagwon MNT E - Happy Valle




North American Arctic Transect: part of a study of
biocomplexity of arctic patterned ground

Planar view:

Profile view:
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Patterned Ground type:
Small nonsorted Medium nonsorted Nonsorted circles Nonsorted circles Nonsorted circles Earth hummocks
polygons polygons (frost boils) (frost boils) (frost boils)

Primary processes:

Frost cracking Frost cracking with Seasonal differential Seasonal differential Seasonal differential Perennial differential
differential frost heave frost heave frost with vegetation frost with vegetation heave with vegetation
succession succession succession

Main bioclimate subzones:
A B,C A B, C C, D C,D D, E E, F-T transition

Based on Walker et al. 2011 (in revision). Applied Vegetation Science.
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Small landscape maps along climate gradient:
10 x 10 grids

Subzone A Subzone B Subzone C Subzone D Subzone E \/egetation of 10x 10 m gl'idS

[j B1a - Bare Ground

|:] B1b - Lichen, forb barren

- B1c - Liverwort, moss barren

]:] 51 - Rush/grass, forb, cryptogam tundra

[:] (2 - Graminoid, prostrate dwarf-shrub, forb tundra

[] G 3-Nontussock sedge, dwarf-shrub, moss tundra

VeQetatidn

D G4 - Tussock-sedge, dwarf-shrub, moss tundra
[ | P1a-Prostrate dwarf-shrub, herb, lichen tundra

[] P1b-Prostrate dwarf-shrub, lichen, moss tundra
[] s1-Erect dwarf-shrub tundra
[[] wz- sedge, moss, dwarf-shrub wetland

B water

Biomass

Biomass Thaw Depth Snow Depth
(g/m?) (cm) (cm)

0-100 0-10 0-10
Thaw depth 100-200 10-20 10-20
300-400 20-30 20-30
400-500 30-40 30-40
500-500 40-50 40-50
600-700 50-50 50-60
700-800 60-70 60-70
70-80 70-80
80-90 80-90

Snbw deptﬁ

Raynolds, M.K., Walker, D.A., Munger, C.A., et al. 2008. A map analysis of patterned-
ground along a North American Arctic Transect. Journal of Geophysical Research -
Biogeosciences. 113:1-18




Classification of patterned-ground vegetation

Phytocoenologia. 38

| Phytocoenologia | 35(4) I 761-820 |Bcrlin—Smrq;an, December 13, ZOC5|

Plant communities and soils in cryoturbated tundra
along a bioclimate gradient in the Low Arctic, Alaska

by Anja Kapg, Donald A. Warker and Martha K. Ray~novps, Fairbanks,
Alaska

with 24 figures, 12 tables and 1 appendix

Abstract. Nonsorted circles and carth hummocks are important landscape components
of the arctic tundra. Here we describe the vegetation on these frost-heave features at
seven study sites along 2 N-S-transect from the Arctic Ocean to the Arctic Foothills,
Alaska. We established 117 relevés in frost-heave features and surrounding tundra and
classified the vegetation according to the Braun-Blanquet sorted-table method. We used
Detrended Correspondence Analysis to analyze relationships between vegetation and en-
vironmental variables. We identified nine ¢ itics: Braya purp. ens-Puccinellia
angustata community (dry nonsorted circles, subzone C); Dryas integrifolia-Salix arctica
community (dry tundra, subzone C); Salici rotundifoliac-Caricetum aquatilis ass.
nov. (moist coastal tundra, subzone C); Junco biglumis-Dryadetum integrifoliac
ass. nov. (moist nonsorted circles, subzone D); Dryado integrifoliac-Caricetum
bigelowii Walker ctal. 1994 (moist tundra, subzone D); Scorpidium scorpioides-Carex
aquatilis community (wet tundra, subzone D); Cladino-Vaccinietum vitis-idacac
ass. nov. (dry nonsorted circles and earth hummocks, subzone E); Sphagno-Eriopho-
retum vaginati Walker et al. 1994 (moist tundra, subzone E); and Anthelia juratzkana-
Juncus biglumis community (wet nonsorted circles, subzone E).

The DCA ordination displayed the vegetation types with respect to complex environ-
mental gradients. The first axis of the ordination corresponds to a bioclimate/pH gradient,
and the second axis corresponds to a disturbance/soil moisture gradient. Frost-heave fea-
tures are dominated by lichens, whereas the adjacent tundra supports more dwarf shrubs,
graminoids and mosses. Frost-heave features have greater thaw depths, more bare ground,
thinner organic horizons and lower soil moisture than the surrounding tundra. The mor-
phology of frost-heave features changes along the climatic gradient, with large, barren
nonsorted circles dominating the northern sites and vegetated, less active earth hummocks
dotting the southern sites. Thawing of permafrost and a possible shift in plant community
composition due to global warming could lead to a decline in frost-heave features and
result in the loss of landscape heterogeneity.

Keywords: biocomplexity, Braun-Blanquet classification, Detrended Correspondence
Analysis, carth hummocks, frost heave, nonsorted circles.

1 Introduction

The \'eﬁetation and soil patterns in many arctic tundra regions are influenced
by the distribution of frost-heave features such as nonsorted circles and earth
hummocks (Wasrsurn 1980). Nonsorted circles and earth hummocks form
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Patterned-Ground Plant Communities along a bioclimate gradient
in the High Arctic, Canada
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along the NAAT

and 1 appendix
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ary analysis of the complex interactions between cli-
mate, soils, and vegetation in the formation of these
landforms along an 1800-km transect in Alaska and
Canada that passes through all five bioclimate sub-
zones of the Arctic Tundra Zone (CAVM Team
2003) (Fig. 1). KApE et al. (2005) described the vege-

transect while this papers describes and analyzes the
vegetation along the High Arctic portion in Canada.

The High Arctic of Canada is characterized
mainly by dry sparsely-vegetated landscapes with
mineral soils, in contrast to the mainly moister well-
vegetated landscapes with peaty soils in the Low
Arctic (Briss & Matveyeva 1992). Patterned ground
andscapes in the
High Arctic. Here we focus on the vegetation of the
smaller patterned-ground features that are dominant
on flat, primarily zonal sites, although we also in-
clude some pmcmtdrground' plant communities in
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Summarized in three papers
using the Braun-Blanquet
approach.

Low Arctic: Kade, A., Walker,

D.A., and Raynolds, M.K., 2005,
Phytocoenologia, v. 35, p. 761-820.

High Arctic: Vonlanthen, C.M.,
Walker, D.A., Raynolds, M.K., Kade,
A., Kuss, H.P., Daniéls, F.J.A., and
Matveyeva, N.V., 2008,
Phytocoenologia, v. 38, p. 23-63.

Synthesis: Donald A. Walker,
Patrick Kuss, Howard E. Epstein,
Anja N. Kade, Corinne M.
Vonlanthen, Martha K. Raynolds &
Fred J.A. Daniéls, 2011 (in revsion).

Applied Vegeation Science.



Studied contrast in vegetation
on and between frost features

Deadhorse Subzone C

Braya purpurascens-Puccinellia Dryas integrifolia-Salix arctica
angustata community community

Kade et al 2005




Frost-boil plant communities, soil and site information
Plant communities Soil and site data

Table 3. Class, order, alliance and association or community names and habitats of the Table 1. Environmental variables and soil physical and chemical properties for the plant
cryoturbated tundra in the Alaskan Low Arctic. associations and communities of the cryoturbated tundra. Mean with standard error in

- parcntheses.
Undescribed unit
Braya purpurascens-Puccinellia angustata comm.

Nonsorted crclkes and small polygons; dry nonacidic tundra; subzone C
C. Carici rupestris-K obresietea bellardii Ohba 1974
0. Kobresio-Dryadetalia (Br.-BL1948) Ohba 1974
A. Dryadion integrifoliae Ohba ex Daniéls 1982
Dryas ntegrifolia-Salix arctica comm.
Stable, dry nonacidic tundra; subzone C
Junco bighimis- Dryadetum integrifoliae ass. nov. ;‘;‘:l‘" depth
Nonsorted circles; moist nonacidic tundra; subzone D Snow depth
Dryado mtegrifoliae-Caricetum bigelowil Waker et al. 1994 (cm)
Stable, moist nonacidic tundra; subzone D o deplh
C. Scheuchzerio-Caricetea nigrae (Nordh. 1936) Tx. 1937 Bam sl
0. Scheuchzerietalia palustris Nordh. 1936 (%)
A. Caricion hsiocarpae Vanden Berghen ap. Lebrun et al 1949 (S\Ooulnf?;mn
Salici rotundifoliae- Caricetum aquatilis ass. nov. Bulk density

Stablk, moist nonacidic coastal tundra; subzone C (gfem’)
Sand content
(%)

Stable, wet nonacidic tundra; subzone D Silt content
C. Loiseleurio- Vaccinietea Eggler 1952 (%)

Qay content

0. Rhododendro- Vaccinietakia Br.-Bl ap. Br.-BL & Jenny 1926 (%)
(A. Loseleurio-Diapension (Br.-BL Et al. 1939) Daniéls 19827) Soil pH
Cladno- Vaccinietum vitis-idaeae ass. nov. -
Nonsorted circles and earth hummocks; moist acidic tundra; subzone E lT;?:al(
Sphagno-Eriophoretum vaginati Walkker et al 1994 TotalN
Stable, moist acidic tundra; subzone E fv)auab» —
C. Salicetea herbaceae Br.-BL 1947 (me/100g)
0. Salicetalia herbaceae Br.-BL 1926 Available Mg
A. Saxifrago-Rammculion nivalis Nordh. 1943 emend. DierB. 1984 =
Anthelia juratzkana-Juncus bighimis comm. (me/100g)

Nonsorted cicles; mosst acidic tundra; subzone E Available Na*
(me/100g)

Puccinellia an gustata comm.
Anthelia juratzkana -Juncus

Junco biglumis -Dyyadetum
biglumis comm

integrifoliae ass.
Sphagno-Erophoretum

vaginati ass.

Cladino -Vaccinetum v itis -

Scorpidium scorpioides -
idacae ass.

Dryas integrifolia -Salix
arctica comm.
Salicirotundifoliae -
Cancetum aquatilis ass,
Dyyado ntegrifolae -
Cancetum bigelowil ass.
Carexaquatils comm

Beaya purpuras cens-
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Scorpidium scorpioides-Carex aquatilis comm.

Kade et al. 2005, Plant communities and soils in cryoturbated tundra
along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia, 35: 761-820.




0 Patterned-ground features

o Intermediate Ordination of zonal patterned
ground vegetation: controlling
environmental gradients

Between patterned-ground
features

\ 22\ Alaska

NMDS ordination.

Clear gradient of vegetation response to
cryoturbation within each subzone and

K+ - Sit Sol org. layer
Latitude ‘i SnowDepth SWI
Clay Y * Moss layer Veg. cover

clear floristic separation between
subzones.

But no clear overall controlling factors
for the whole data set.

Floristic separation between Alaska and

CN EH Canada portions of the gradient due to
Na+ Sand?, A&g\ﬁ layer thickness different floristic provinces, and
Rock C substrate differences.
Bare Soil moisture

Biomass Veg. height

| | | Walker et al. 2011 in revision. Applied Vegetation
2 1 0 1 2 Science.




A few of the conclusions from the NAAT vegetation
studies

1. Vegetation is the principal factor affecting thermal differentials between the
centers and margins of small patterned-ground features and strongly

affects the types of patterned ground features that are dominant within
zonal Arctic landscapes.

2. Recognizing characterizing and classifying the small-scale plant
communities within respective microhabitats was essential for

understanding the biological and physical controls of patterned-ground
morphology.

3. The zonal patterned-ground vegetation complexes (combined
microhabitats) were useful for landscape and regional-level comparisons,
such as comparison of floristic richness in zonal landscapes, or for
extrapolation of information collected at plot scales (such as biomass and
NDVI) to larger regions.




The Eurasian Arctic Transect:

« Part of an IPY study to examine the linkages between changing Arctic sea-

ice conditions, summer land temperatures, and vegetation
» 2010 expedition to Hayes Island, Franz Josef Land, completed paraliel

transect studies in North America and Eurasia.




Landscapes of the
Yamal Peninsula

1. Extensive nutrient-
poor surface sands
with lichens that are
easily overgrazed by
reindeer.

2. Underlain by
permafrost with
massive pure ice.

3. Extensive landslides

are rapidly eroding the
landscape.

4. This exposes salt-
rich and nutrient-rich
clays.

5. Complex vegetation
succession process
that results in willow-
shrub tundra and
much greener
vegetation in the
eroded valleys.

Photos: D.A. Walker
and M. Liebman (upper right)




Reindeer effects on greenness patterns:

Overgrazing Trampling

- ‘-“‘,.- “%"'.lii : ‘ 20 ;g\-' .Ah' :' : -_'J‘C:‘:.‘.' - . . W vl S
- Effects on reindeer on NDVI are unknown at present because of
lack of control areas to study the effects (exclosures). Photos: Bruce Forbes.

« Potential major effect in sandy areas.




Typical layout of transects and plots at each EAT site

Sampled loamy and
sandy sites within
each subzone.

Five 50-m transects

Five 5 x 5-m plots
(releveés)

Biomass harvests in
each plot (x)

iButtons for n-factor
in corner of each plot

(°)

Soil pit in SW corner

18




NMDS Ordination of all EAT study plots based on
floristic similarity

« Subzone A floristically
distinct from the rest of

the gradient.

a, b, ¢, d, e: Bioclimate Plots organized along
subzones the Axis 1 by summer
warmth, and along the
second axis by soil
texture, reflecting the
sampling strategy.

Sandy

| )
o

Loamy

NMDS axis 2

I I I
0.2 0.4 0.6

€& |[ncreasing summer warmth




Full data set: Axis 1: Complex biomass / summer-
warmth gradient

Axis 1 most strongly
correlated with total
biomass.

Also, summer warmth, NDVI,
LAI, disturbance, active
layer thickness, species
richness.

Summer warm index

0.6

0.4

0.2

NMDS axis 2

0.0

-0.2

Total Biomass (g m?)
<€

Summer warmth (°C mo)
<€




Soil moisture

o by
b

b
105

Full data set: Axis 2:
Complex soil moisture, soil
texture, N, organic matter
gradient

Vol. soil moisture (g cm-3)

<€




NMDS axis 2

Total Biomass (g m)
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NMDS axis 2

Biomass space: Yamal plots
only (excluding FJL)

Total shrub biomass Total graminoid biomass

NMDS axis 2
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NMDS axis 2

* Field NDVI is most strongly correlated to total | A

biomass.




Toward a synthesis of the two transects

Although the research along the two transects had different
objectives. There is a common primary data set from both
transects:

1. Vegetation, soils, and site factors from zonal vegetation
along the complete Arctic bioclimate gradient.

2. Ground measurements of key plant productivity
variables: biomass, LAI, and NDVI.

3. A circumpolar remote-sensing data set that contains
vegetation, land temperatures, and NDVI data for both
transects and changes in NDVI since 1982.

This allows us to compare the spatial and temporal trends in
vegetation, biomass, and NDVI between the two transects in
response to ongoing changes in climate and land-use.




Synoptic tables for
NAAT and EAT

Only a few taxa were
diagnostic for the same
subzone along both
transects:

Subzone A:
Cerastium arcticum
Draba subcapitata
Saxifraga cernua

Subzone E:
Betula nana/exilis
Empetrum nigrum
Salix phylicifolia/
pulchra

But many more for the
broader High Arctic, Low
Arctic groups of subzones.

Mo, of re e 2 0 2 No. of plots 10 10 10 15 10,
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Comparison of EAT and NAAT
Leaf Area Index vs. Biomass
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« An equivalent amount of biomass has consistently much higher LAI
values along the NAAT than along the EAT and the difference increases at
higher biomass values.

* Reflects the different structure of the vegetation along the two transects.
Higher proportion of the total biomass is non-green along the NAAT (more

wood, standing dead, hairy leaves, brown moss, evergreen shrubs and
lichens).




Almost identical correlation between AVHRR NDVI and
biomass along the two transects

1-km AVHRR NDVI vs. Aboveground Biomass
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Circumpolar aboveground biomass derived from
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Conclusions

1.There are broad similarities in community composition and structure
between North America and Eurasia transects, but also major
differences related to different disturbance regimes, geology, and
precipitation patterns.

2.The Eurasia transect is much more homogeneous in the middle part
of the transect (subzones B, C, D) than the NAAT.

3.Based on these data, it is not possible to define distinct zonal plant
communities, except at the ends of the gradient in Subzones A and
E, which are similar on both transects. The middle parts of the
gradients have few good diagnostic taxa.

4.0rdination analysis reveals strong relationships between field-NDVI
and total live biomass.

5.There is also a very strong correlation between AVHRR NDVI and
zonal landscape-level biomass, that is nearly identical along both
transects, which gives us good confidence in the biomass of zonal
sites as depicted on our biomass map of the Arctic.

6.This study has shown the feasibility of studying and monitoring
zonal landscape-level biomass and NDVI across the full Arctic
bioclimate gradient.
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