

Does the the loss of sea ice affect the tundra and those who depend on it?

Greening of the

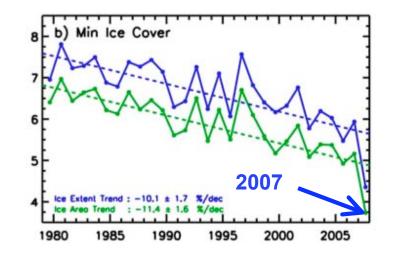
initiative

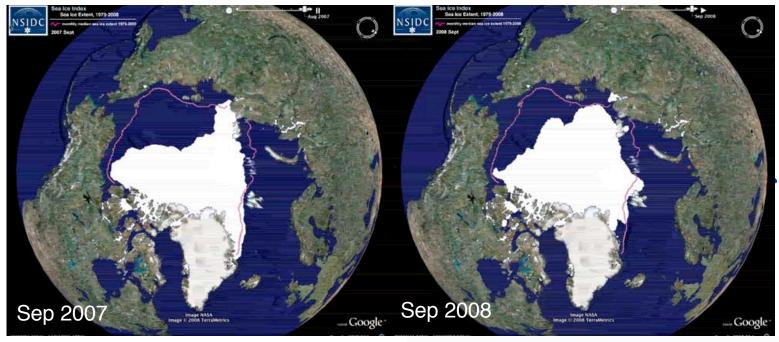
Arctic: an IP

Skip Walker *University of Alaska Fairbanks* IAB Seminar, November 21, 2008

Outline of talk

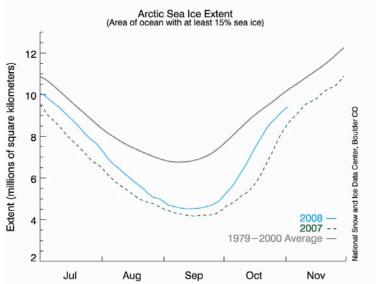
- Rationale and overview of the GOA initiative.
- North American Arctic Transect.
- Yamal Russia Transect.
- Circumpolar analysis of 28-year trends of sea-ice concentration, land-surface temperatures and greening patterns.


Trend in Arctic sea-ice


2007 minimum sea-ice extent, 4.5 million km². NSIDC.

Since 1980, perennial sea ice extent in the Arctic has declined at the rate of 10.1% per decade, and area trend is -11.4% decade.

Comiso et al. 2008, *Geophysical Research Letters* 35: L01703.



2008 sea-íce

2008 was the second lowest minimum.

The Arctic coasts of North America and Asia were simultaneously ice free for the first time on record.

The Arctic tundra is a maritime biome

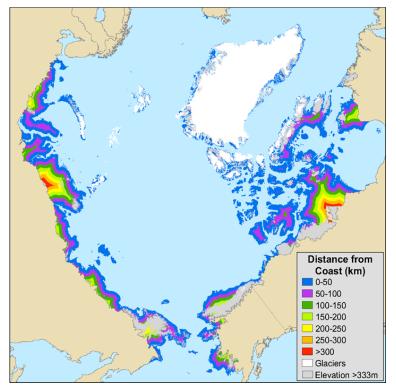
Barrens

Graminoid tundras

Prostrate-shrub tundras P1. Prostrate dwarf-shrub, herb tundra

P2. Prostrate/hemiprostrate dwarf-shrub tundra

Erect-shrub tundras

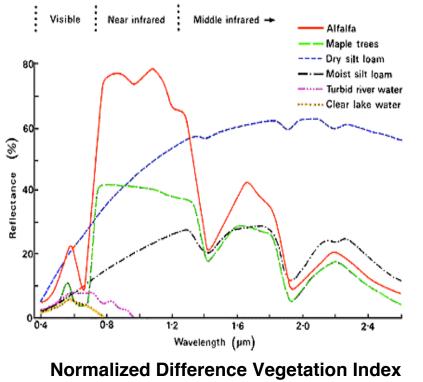

S1. Erect dwarf-shrub tundra S2. Low-shrub tundra

Wetlands

W1. Sedge/grass, moss wetland W2. Sedge, moss, dwarf-shrub wetland W3. Sedge, moss, low-shrub wetland

Non-Arctic areas

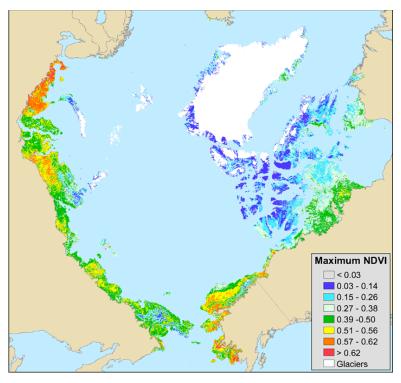
Walker, D. A., 2005. The Circumpolar Arctic Vegetation Map. Journal of Vegetation Science.



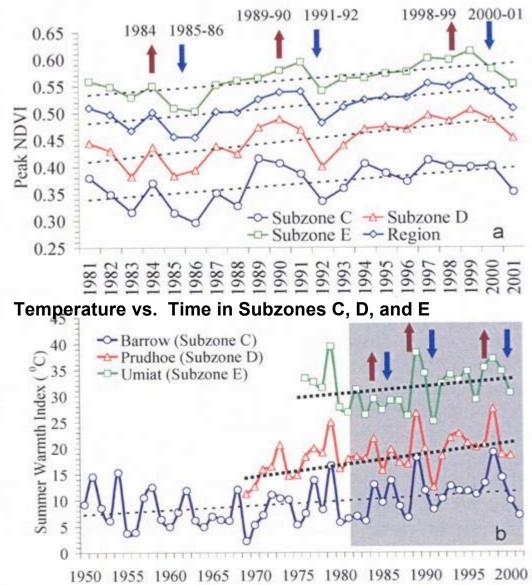
Map by Hilmar Maier.

- 61% of the tundra is within 50 km of sea ice (blue buffer).
- 80% is within 100 km (magenta and blue buffers).
- 100% is within 350 km (all colors).
- · Changes in the Arctic ocean sea ice will very likely affect terrestrial ecosystems.

Normalized Difference Vegetation Index (NDVI): An index of greenness


Reflectance spectra of common ground-cover types

NDVI = (NIR - VIS) / (NIR + VIS)


- NIR = spectral reflectance in the near-infrared band (0.7 -
 - 1.1 μ m), where light scattering from the cell-structure of the leaves dominates.
- VIS = reflectance in the visible, chlorophyll-absorbing portion of the spectrum (0.4 to 0.7 μ m).

Circumpolar patterns of NDVI

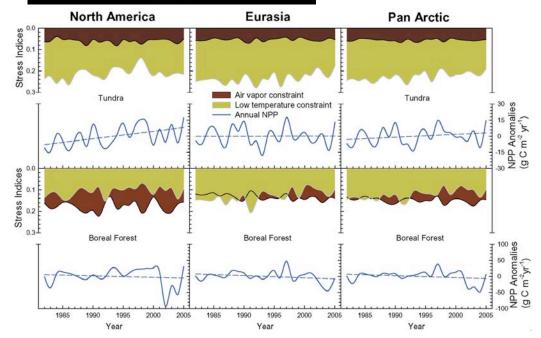
CAVM Team. 2003

In general, land cover with high reflectance in the NIR and low reflectance in the visible portion of the spectrum has dense green vegetation.

NDVI vs. Time in Bioclimate Subzones C, D, and E

Time series of peak NDVI for northern Alaska (1981-2001)

- 17 ± 6% increase in peak NDVI from 1981-2001.
- Available biomass data indicate that this increase in NDVI corresponds to about a 150 g m⁻² increase in biomass.
- Changes in NDVI show a long term increase and also some correspondence to yearly fluctuations in temperature.


Jia et al. 2003 Geophysical Research Letters. 30: 2067.

Time series of peak NDVI anomalies in the tundra and boreal forest (1981-2005)

Green: increasing NDVI Red: decreasing NDVI White: no trend

- 88% of the region is shows no significant trends in NDVI. 3% have decreasing trends, and 9% have increasing trends.
- Most of the positive changes are in tundra areas, particularly in North America.
- Forest areas are showing an overall decline in NDVI.

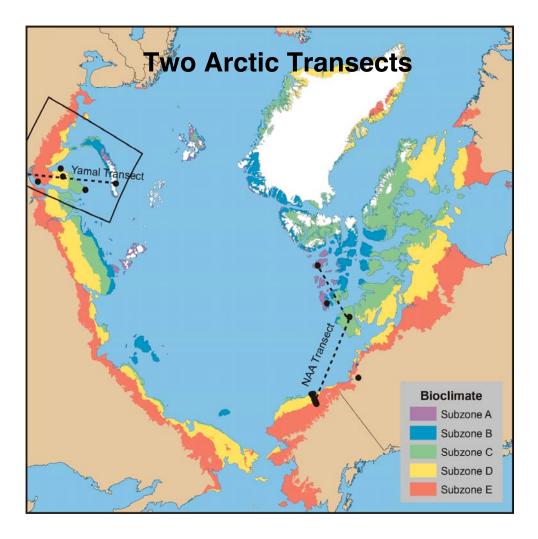
Bunn et al. 2007. EOS. Northern high latitude ecosystems respond to climate change. 88: 333-335.

There is not a lot of direct evidence for change in Arctic vegetation.

Photo – M. K. Raynolds

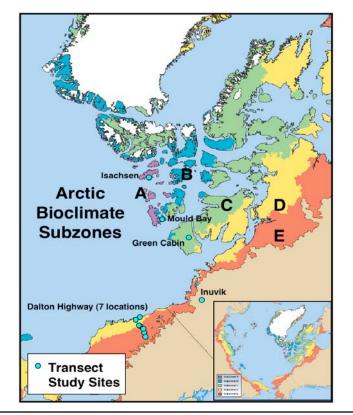
- Mostly experimental evidence;
 - Green-house experiments (Chapin et al.)
 - ITEX experiments
- One long-term biomass study of Shaver at Toolik Lake that is suggestive of change but inconclusive.
- Photo record of shrub cover change in northern AK (Matthew Sturm, Ken Tape, and Chuck Racine):
 - Over 30% increase in alders on some stable valley slopes in the warmest parts of the Arctic.
 - Dramatic increase in shrub cover on river terraces.

Uncertainties and needed research

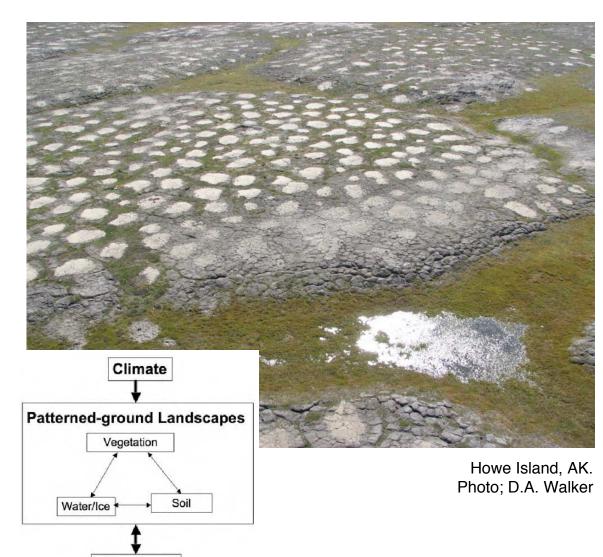

• There are virtually no long-term biomass data to support or dispute the trends shown by NDVI.

"Should we believe in the NDVI trend? There are no "ground truth" measurements of photosynthesis at northern high latitudes over the same period, and so the accuracy of the trend cannot be established unambiguously.... It will be a challenge for ecologists to explain how photosynthesis could possibly have increased by approximately 10% from 1981 to 1991." (Inez Fung 1997)

- Causes of variation of NDVI within the Arctic as well as seasonality of NDVI have not been examined. The relative roles of interacting factors (e.g., climate, sea-ice distribution, elevation, glacial history, substrate chemistry, water regimes) need to be better understood. Is the current trend still partially a long-term response from the last glaciation?
- Other NDVI issues:
 - -Variation with latitude and different sun angles in tundra.
 - -Calibration problems between different satellites.
- Greenness changes in the Arctic need to be more clearly linked to issues relevant to man (e.g., wildlife habitat, links to other elements of the Arctic system, feedbacks to global system).


GOA studies are focused along two Arctic transects.

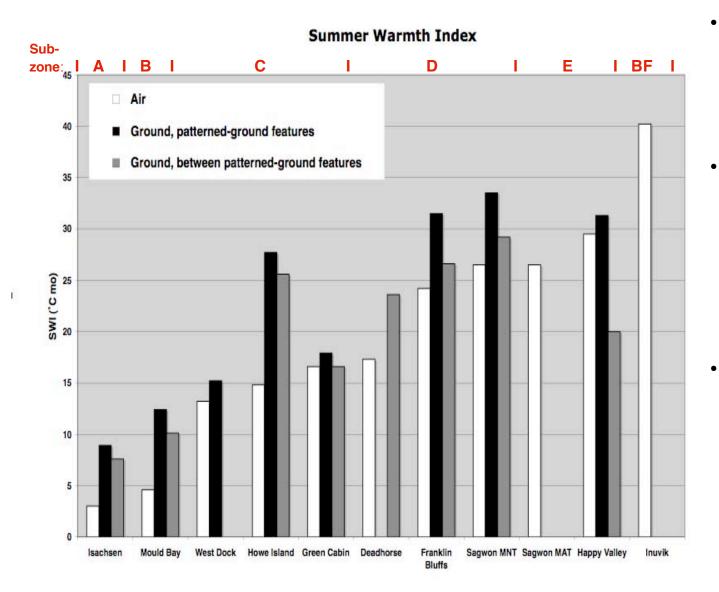
Transects in North America and Eurasia through all five bioclimate subzones as portrayed on the CAVM.


North American Arctic Transect (NAAT)

- 1800-km transect through five Arctic bioclimate subzones in North America.
- Initiated in 2002–06 as part of NSF Biocomplexity of Patterned-Ground Project.
- Numerous other IPY studies are coordinated with this effort (e.g. CALM, TSP, Lee Taylor's mycorrhizae transect).
- 7 sites in AK and 4 in Canada.

Subzone	Mean July Temp (°C)	Circumpolar Area (km² x 10 ⁶)
Α	1–3° C	0.114 (2%)
В	3–5° C	0.450 (6%)
С	5–7° C	1.179 (17%)
D	7–9° C	1.564 (22%)
E	9–12°C	1.840 (26%)
Glaciers		<u>1.975 (28%)</u>
Total Arctic		7.111 (100%)

Central Questions of Biocomplexity project



Permafrost

- How do biological and physical processes interact to form small patterned- ground ecosystems?
- How do patternedground processes vary across the Arctic climate gradient?

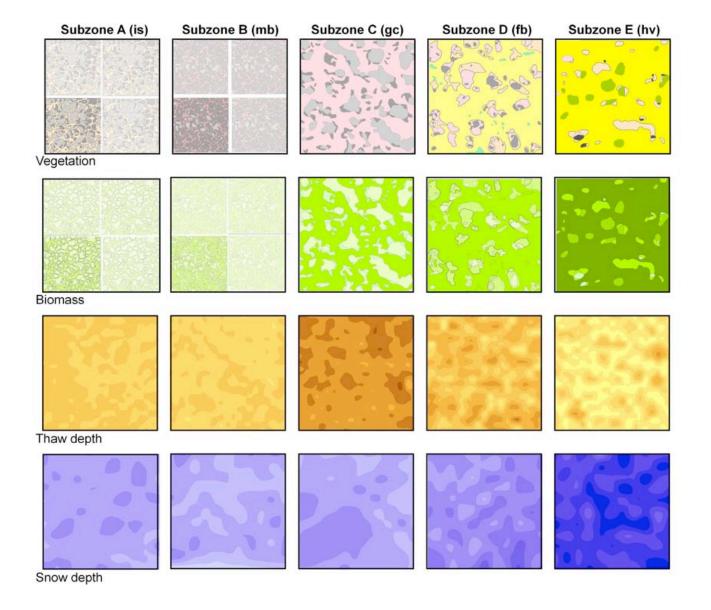
Walker et al. 2008, JGR

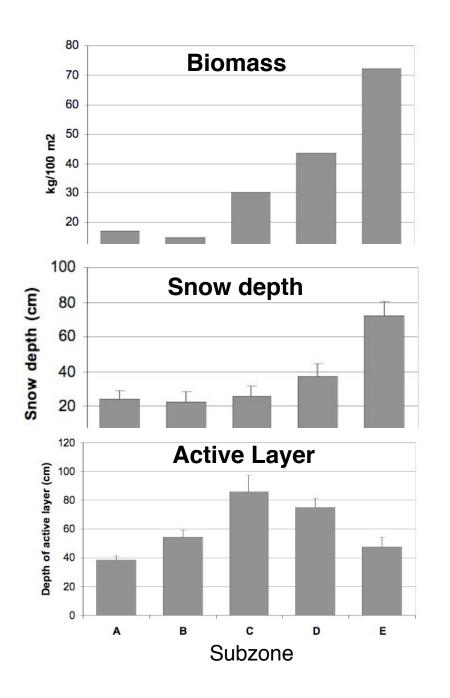
Summer warmth index along the NAAT

- > 10x increase in total air summer warmth (white bars).
 - Surface temperatures are warmer than air temperatures (especially in High Arctic)
- Barren patterned ground features are warmer than the adjacent tundra.

Climate data: V.E. Romanovsky

North American Arctic Transect Activities

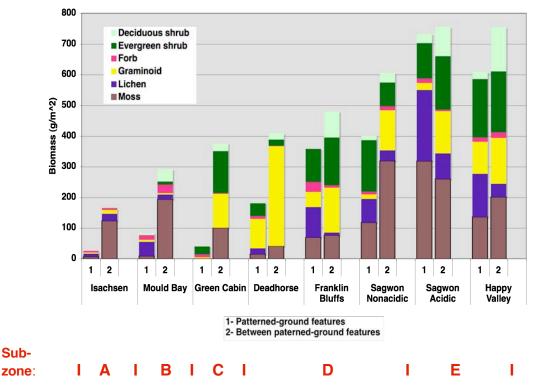

- CALM Grids
 - Active layer
 - Vegetation
 - Snow
- Climate /permafrost
 - Met station
 - Soil temperatures
 - Frost heave
- Soils
 - Characterization
 - Nitrogen mineralization
 - Decomposition
- Vegetation
 - Classification
 - Biomass
 - Mapping
- Remote sensing
 - NDVI
 - Mapping
- Modeling
- Education



Isachsen Grid, Subzone A Photo D.A. Walker

Maps of vegetation, biomass, active layer and snow depth

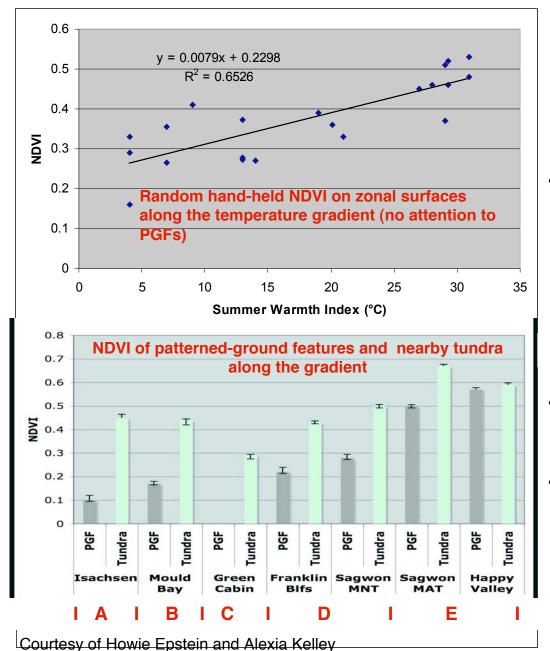
- Raynolds et al. 2008 *JGR -Biogeosciences*
- Maps are from representative zonal sites in each bioclimate subzone.



Trends in biomass, snow depth, and thaw on zonal grids

 Both biomass and snow depth depth increase toward the south and both have major effects on soil temperature regimes.

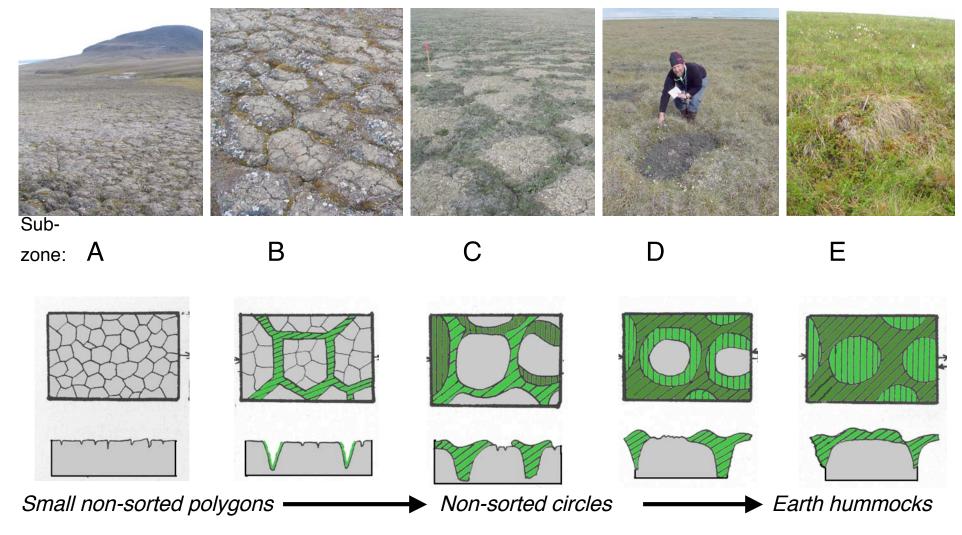
Raynolds et al. 2008, *JGR-Biogeosciences*


Biomass on patterned-ground features and zonal areas

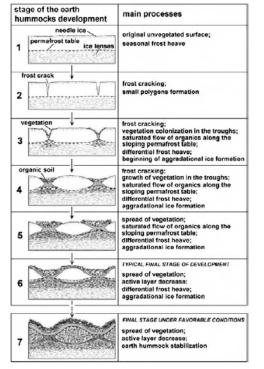
Walker et al. 2008, JGR-Biogeosciences

Biomass along the NAAT

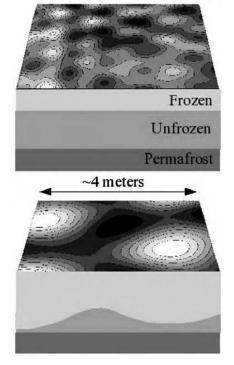
- 5-fold increase on zonal sites.
- 30-fold increase on patterned-ground features.
- Shift in dominant growth forms with temperature on zonal sites.
- Different suite of plant growth forms on the patterned-ground features.


NDVI along the NAAT

 2-fold increase of the NDVI on zonal surfaces.

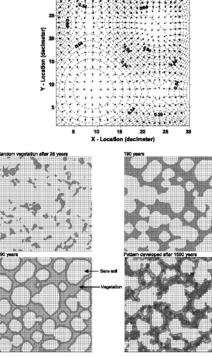

- 6-fold difference in NDVI on PGFs.
- 2-fold difference in NDVI between PGFs.

Trend in patterned-ground along the Arctic bioclimate gradient

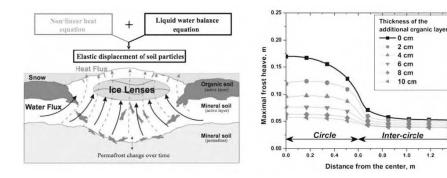


Drawings modified from Chernov and Matveyeva 1997

Four models of patterned ground formation



Conceptual model of frost-boil and hummock formation, Shur et al. 2008, NICOP proceedings



Differential frost-heave model Peterson and Krantz, JGR 2008

1.2

Coupled Water-Ice-Temperature / ArcVeg model, Daanen et al. 2008 JGR

Thermo-mechanical model, Nicolsky et al., JGR 2008

Each provides a unique perspective:

- Conceptual nonnumeric approach that incorporates cracking and frost heave (Shur et al 2008).
- Self-organization model for initinvolving linear instability of top-down freezing in soils (Peterson and Krantz 2008).
- Linked hydrology-vegetation succession model at a landscape scale (Daanen et al. 2008).
- Detailed physical processes model of thermal, hydrology, and heave processes within a single nonsorted circle (Nickolsy, Romanovsky et al. 2008).

Special significance of the Subzone A site at Isachsen

In the Russian literature, subzone A is treated as an entirely separate bioclimate "Zone" — the true "polar desert" of Gorodkov, Alexandrova and others.

If the Tundra Zone is defined by its proximity to the Arctic Ocean, subzone A is defined by its proximity to <u>perennial</u> sea ice.

Isachsen, Nunuvut, Canada

Barren sea cliffs at Isachsen coast

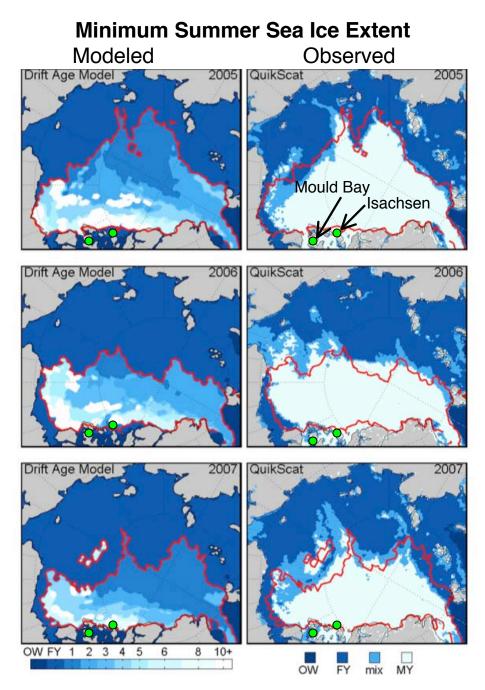
Subzone A is a very cool place.

Very cold summers (mean July temperature < 3 °C).
Very small vascular-plant flora (50 species).
No woody plants.
No sedges.
Enhanced role of lichens and mosses.
No peat deposits.
y little published ecosystem information from this subzone.

Subzone A: "the Poppy zone"

Small differences in microclimate or moisture make a huge difference in vegetation production.

A warming of only 2 °C will convert this to Subzone B climate with a potential doubling of the vascular-plant species that could colonize the area.



Vegetation on warmer mesic site, Isachsen

Vegetation at base of snow bed, Isachsen

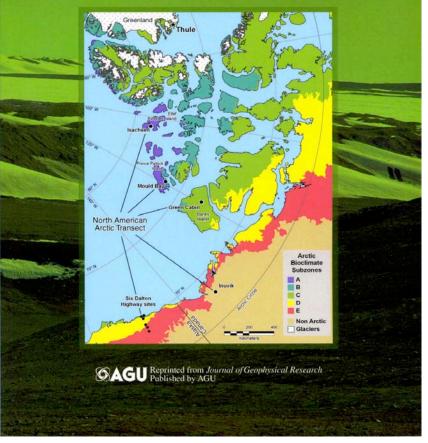
Papaver polare on dry zonal sites

Lessons from 2007 minimum sea-ice event:

Modeled predictions of sea-ice ages in Arctic Basin indicate that the oldest ice is in the vicinity of the western Canadian Archipelago and will be the last to melt in the Arctic. This is also the region of bioclimate subzone A.

The terrestrial ecosystems in this region are dependent on the summer sea ice to maintain the cold temperatures.

If summer arctic ice vanishes, so does Subzone A. Subzone A is a rare and <u>endangered</u> bioclimate subzone!


Modified from Nghiem et al. 2008.

Multi-scale Databases from the NAAT

C				
Legacy from		Macroscale (panArctic)	Mesoscale (Regional to toposequence)	Microscale (plots)
Legacy from the Bíocomplexity Project	Climate	Trends in air and ground temperature, snow depth along the climate gradient (Romanovsky, US Weather Service, Environment Canada). Circumpolar land-surface temperature (Comiso)	Trends in soil temperatures, and snow distribution along toposequences (Romanovsky).	Soil temperatures, and snow depth on patterned- ground elements. (Romanovsky) Snow profiles on patterned-ground elements (Walker et al.) Snow depth maps (10 x 10-m grids) (Raynolds, Munger).
Datasets from the NAAT provide an	Permafrost	Trends in permafrost temperature, n-factor unfrozen water content, active layer depth, and frost heave along the climate gradient. (Romanovsky, Kade). Circumpolar permafrost map (Brown et al.)	Trends in n-factor, active layer depth, and frost heave along the toposequences (Romanovsky, Kade) WIT/ArcVeg model of patterned-ground formation (Daanen, Misra, Epstein)	 Heave, active layer depth, soil-water content, unfrozen water, and n-factor within patterned- ground elements (Romanovsky). Active-layer and snow-depth maps (10 x 10 m grids) (Raynolds, Munger)
important baseline of information for future climate	Geology/ Geomorph.	Circumpolar patterns of landscape age, glacial geology, bedrock,and physiography. (CAVM Team, Raynolds)	Surficial geomophology along toposequences. (Walker et al.)	Elements of patterned-ground features. (Walker et. al., Tarnocai) Thermo-mechanical model of differential frost heave (Nickolsky, Romanovsky) DFH model of heave initiation (Peterson, Krantz)
change studies across the complete Arctic climate gradient.	Soils	Circumpolar Soils Map (Tarnocai and Ping) Circumpolar Carbon Map (Tarnocai) Trends in soil C and N along the climate gradient (Ping and Michaelson)	Soil associations along toposequences (Ping). Trends in soil chemical and physical characteristics along toposequences. (Ping and Michaelson)	Pedon within each patterned ground element (Ping). Cryptogamic crusts in each patterned ground element. (Michaelson) Physical and chemical properties of soils in each patterned-ground element. (Ping and Michaelson) N-cycling in each patterned-ground element (Kelley).
	Microflora/ fauna	Trends in soil invertebrates, microbes, fungi/ mycorrhizae along the climate gradient. (Gonzalez, Timling)	Trends in soil invertebrates, microbes, fungi/ mycorrhizae along toposequences. (Gonzalez, Timling)	Soil invertebrates, microbes, fungi/ mycorrhizae in patterned-ground elements. (Gonzalez, Timling)
	Vegetation	Circumpolar AVHRR NDVI, and vegetation(CAVM Team, Raynolds, Epstien, Jia) Trends in zonal vegetation biomass along the climate gradient (Walker et al., Epstein) Buried seed bank along the climate gradient (Kelley) ArcVeg succession models along the climate gradient (Epstein)	Plant communities along toposequences (Kade, Vonlanthen et al.). 10 x 10-m vegetation maps along toposequences (Raynolds, Munger)	 Plant communities within patterned-ground elements (Kade, Vonlanthen et al., Matveyeva, Daniëls). 1 x 1-m vegetation maps (Kade) Handheld LAI and NDVI of patterned-ground elements. Biomass of plant communities (Walker et al., Epstein). Buried seed bank within patterned ground elements (Kelley)

Synthesis of information from the North American Arctic Transect

Biocomplexity of Arctic Tundra Ecosystems

- Synthesis of the project recently published in special issue of *Journal of Geophysical Research – Biogeosciences:*
 - 9 papers from the North American Arctic Transect.
 - 5 papers from the Thule, Greenland biocomplexity project (Welker et al).
- 21 collaborators including the following from UAF: Ronnie Daanen, Anja Kade, Patrick Kuss, Gary Michaelson, Corinne Munger, Dmitri Nickolski, Rorik Peterson, Chien-Lu Ping, Martha Raynolds, Vladimir Romanovsky, Ina Timling, Yuri Shur, Corinne Vonlanthen, Skip Walker

Walker, D. A. et al. 2008. Arctic patterned-ground ecosystems: a synthesis of field studies and models along a North American Arctic Transect. *Journal of Geophysical Research - Biogeosciences* 113:G03S01, doi10.1029/2007JG000504.

Other publications

Carbon is sequestered by patterned-ground formation processes deep in the active layer and permafrost, contributing to the high carbon stocks in Arctic soils.

ARTICLES

High stocks of soil organic carbon in the North American Arctic region

CHIEN-LU PING1*, GARY J. MICHAELSON1, MARK T. JORGENSON2, JOHN M. KIMBLE3, HOWARD EPSTEIN⁴, VLADIMIR E. ROMANOVSKY⁵ AND DONALD A. WALKER⁶

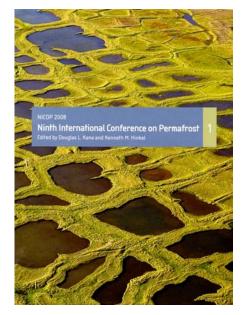
'Agrisufture and Forestry Experiment Station, University of Alaska Fairbanks, 533 E. Fireweed, Palmer, Alaska 99645, USA 'Alaska Biological Research, Box 80410, Fairbanks, Alaska 99708, USA Professional Soil Scientist, 151 East Hill Church Road, Addison, New York 14801, USA Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlotto-ville, Virginia 22804, USA
 "Goophysical Institute, University of Alaska Enirhanks, PD Box 750780, Enirhanks, Alaska 99776, USA
 "Westitute of Arcie Biology, University of Alaska Enirhanks, PD Box 750700, Enirhanks, Alaska 99776, USA e-mail: ffcp@uaf.edu

Published online: 2.4 August 2008; doi:10.1038/ngeo28

The Arctic soil organic-carbon pool is a significant, but poorly constrained, carbon store. The most cited pool size estimates are The article soft organic carbon poor is a significant, our poorly constrained, action softer the most cred poorly accessing a study that severely undersamples Arctic soils, with only five out of the 48 soils examined actually from the Arctic region. Furthermore, previous measurements have been confined to the top 40 cm of soil. Here, we present 1–m-deep measurements of For the most previous mean transmission of the constraints of the second caroon in respectively, and rowes in routenau alion moduli shins, while far dataset a transfer shift and the shift of a single shift of the shift of important basis for studies examining the impact of climate warming on CO, release in the region.

Patternel ground features, caused by frost cracking and heave, are prominent on the circumarctic landscape¹². These features include sorted and non-sorted circles, stripes, dedication polygons and ke wedge polygons¹. Associated with these features, Arctic tundra soils show strong evidence of cryoturbation. The soils are characterized by warped, broken and distorted soil horizons, and surface organic matter is churned down to the lower active lavers and upper matter is charmed down to the lower active layers and upper permainfors¹⁴. The presence, form and abundance of patterned ground plays a key role in determining tundra vegetation²⁵, the morphology and properties of cryogenic soli8²⁵ and the dynamics and sequestration of carbon²²⁵. In the Arctic, much of the movement of sol organic carbon (SOC) from the surface to depth is accomplished through cryoturbation⁷. This movement is caused by cracking due to soli frage-than elders and by solid hydrothermat gradients that produce differential frost heave10. Non-sorted circles are a common form of patterned ground in the hilly uplands and lowlands of the Middle and Low Arctic, whereas polygonal cracking and striping patterns are common in the hilly uplands of the High Arctic⁵⁷. Based on surface observations, the influence of non-sorted circles seems to decrease from the north to the south. Non-sorted circles are also common in the hilly uplands and lowlands of the Low Arctic, but their surface appearance is masked by vegetation¹¹. The SOC in a typical soil profile under a non-sorted circle is unevenly mixed and distributed in recognizable masses within the active layer and upper permafrost34 (cryoturbated soil horizons; see

winned ADVANCE ON THE PUBLICATION I wave enture com/nateraore


under non-sorted circles.

under non-sorted drichs. Recently, there have been many studies assessing SOC in relation to global change. These have included assessments of the temperature sensitivity² and global distribution²⁰ of SOC, and model simulations of CO, release¹⁴. These regional and global SOC assessments continue to use the average value of 12 Magm⁻² for Arrici (undrul³ SOC assos, an estimate that ignores a significant end of the meant students of CO. Unsures coment students are of the meant students of SOC assos. Arctic tundral¹⁸ SOC stores, an estimate that ignores a significant part of the cryoturbated SOC (ref. 4). However, current studies in the Arctic have pointed to the importance of this deeper-soil profile of organic carbon and its potential for effecting and being affected by climate change^{6,17}. There are several lines of evidence pointing to the importance of these SOC stores as they are affected by warming temperatures, such as the wideopread warming of the upper permafracts in the Arctic^{14,18} and effluct of put 80% of the seasonal C flux from tundra soils during the cold season when the organic-carbon it the Arctic^{14,18} and effluct of the soil profile^{14,17}. The Arctic occupies about 13% of the land area and is estimated to hold about 14% of the SOC pool²⁵. This widely cited estimate is form the 1982 study of SOC in the world's life zones²⁸ and is for the entrue tundral life zone, but is commonly cited for the

is for the entire tundra life zone, but is commonly cited for the estimation of Arctic SOC pools. In this study the tundra regions were represented by an average value of 21.8 kgm-2 SOC for an

Other publications from the Biocomplexity project and North American Arctic Transect

Ninth International Permafrost Conference papers (6):

Other journal publications (30 + 2 in prep):

Jancas big The D

DOI: 10.1

Phytocoenologia 35 (4) 761-820 Berlin-Stumpart, December 13, 2005 Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska by Anja KADE, Donald A. WALKER and Martha K. RAYNOLDS, Fairbanks, Alaska with 24 | Performantique, Neptor 22, 22-43 Patterned-Ground Plant Communities along a bioclimate gradien VonLearvers, Donald A. Walkers, Martha K. Remotos, Anja Kaze, Patrick Kurss Janka, USA), Fred J. A. Davidus (Minister, Germany), and Nadezhida V. Maryatyrov Activity and Implications for Climate Change in the Arctic Arctic, Aniarctic, and Alpine Research, Vol. 40, No. 1, 2008, pp. 96-383 Anja Kade* and Donald A. Walkert Inst and Periglac. Process. 17: 279-2 hed online 17 October 2006 in Wiley In DOI: 10.10070 InterScience Philotogy and Waldlife Department, Iwing I, University of Ahnika Fashwarks, Fashwarka, Ahaska 1977; U.S.A. Sanki ginuf adu Tianima of Annia Michael Basingy, P.O. B 202000, University of Ahaska Fasiha Fasihunka, Ahada 9977), U.S.A. The N-Factor of Nonsorted Circles Along a Climate Gradient in Arctic Alaska A. Kade¹⁺ V. E. Romanovsky² and D. A. Waller³ Biology and Wildlife Department, University of Alaska Faitbanks Geophysical Institute, University of Alaska Faitbanks, USA Institute of Arctic Biology, University of Alaska Faitbanks, USA ABSTRACT Three study sites were selected on zonal sites from north to south along a Alaska. Air and mineral soil surface temperatures of nonsorted circles and ad tots were monitored from tranic horizons and sees the thickness of superstand at base circles from 1.43±0.0 99.5±2.4cm, respectively, and at the tundra from 0.99± 21.0±2.8cm, respectively. Copyright © 2006 John W rased at bare circles from 1.43±0.02 to 0.74 INTRODUCTION INTEGRATION CONTRACT, DESCRIPTION OF A DESCRIPTION OF ects on average regional active-layer al., 1997; Walker et al., 2003, 2004).

> * Correspondence to: A. Kade, Biology and Wildlife Departs ment, University of Alaska Fuitbanks, 211 Irving I, Patrhanks, RK 9975, USA E-ensil: Stank@saf.edu Copyright ⊕ 2006 John Wiley & Sons, Ltd.

Data reports (9):

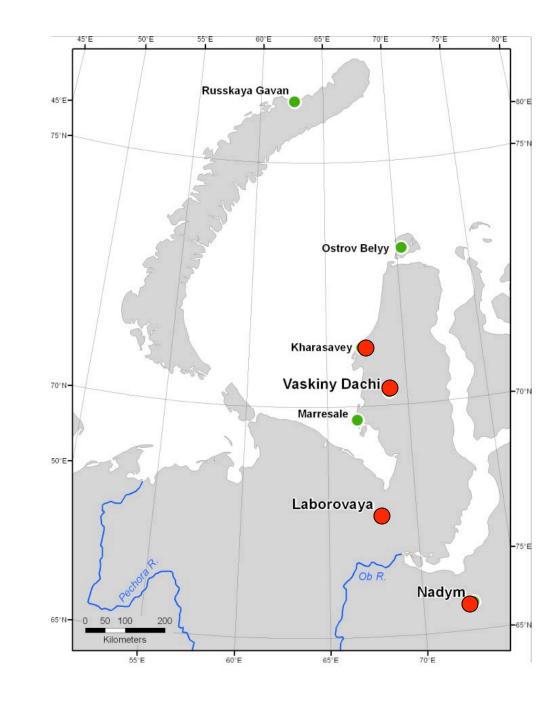
The Yamal Península Transect:

Cumulative effects of resource development, reindeer herding, and climate change on the Yamal Peninsula, Russia

Funded by NASA

Yamal Transect

2007


- Nadym
- Laborovaya
- Vaskiny Dachi

2008

Kharasavey

2010 (proposed)

- Ostrov Belyy
- Russkaya Gavan (or Franz Josef Land)
- Marresale (or site in N. Yamal)

Collaborators

Uma Bhatt, Gary Kofinas, Jozsef Geml, Martha Raynolds, Vladimir Romanovsky, Lee Taylor, Skip Walker: University of Alaska Fairbanks

Marina Liebman, Nataliya Moskalenko, Pavel Orekov, Artem Khomotov, Anatoly Gubarkov: *Earth Cryosphere Laboratory, Moscow, Russia*

Bruce Forbes, Florian Stammler, Timo Kumpula, Elina Karlejaärvi: *Arctic Centre, Rovaniemi, Finland* Howie Epstein: *University of Virginia* Jiong Jia: *REC-TEA, Chinese Academy of Science* Joey Comiso: *NASA Goddard*

9MAAA

- Examines the linkages between greening trend range and forage for the reindeer of the Nenets and the regional sea-ice conditions.
- Field research and modeling in all 5 arctic biocli subzones.
- Linked to the Circumpolar Arctic Rangifer Monit Assessment (CARMA) project, and the Cold La Process in NEESPI (CLPN), and the (Environm Social Impacts of Industrial Development in Nor Russia (ENSINOR). NEESPI = Northern Eurasia Science Partnership Initiative.

Working with permafrost experts, sociologists, biologists, and soil scientists with long experience on the Yamal Peninsula

Earth Cryosphere Institute, Russian Academy of Science, Moscow organized the expeditions. Led by Marina Liebman and Nataliya Moskalenko.

Elina Karlejaärvi (Arctic Centre, graduate student, botanist), Nataliya Moskalenko (ECI, ecologist), Howie Epstein (U Va Co-PI, ecosystem ecologist), Marina Leibman (ECI, Permafrost, geomorphologist), Patrick Kuss (UAF, Post Doc, botanist), Anatoly Gubarkov (ECI, graduate student, permafrost, industrial impacts), Artem Khumotov (ECI, graduate student, GIS), George Mateyshak (MSU, Soil Scientist) Photo: D.A. Walker

Environmental and Social Impacts of Industrial Development in Northern Russia (ENSINOR)

Bruce Forbes, Arctic Centre, Rovaniemi, PI of the ENSINOR Project.

Florian Stammler interviewing members of Nenets brigade. Combining remote sensing and traditional knowledge.

Photo: Bruce Forbes

The Yamal

Typical of the sorts of changes that are likely to become much more common in tundra areas of Russia and the circumpolar region within the next decade.

- Currently, large areas of wilderness with no roads or development, but..
- large-scale gas and oil potential,
- extraordinarily sensitive permafrost environment
- traditional pasturelands for the nomadic Yamal Nenets people,
 - rapid changes in climate.

Goal: Develop tools using remote sensing and modeling to better predict the cumulative effects of resource development, climate change, reindeer herding, and the role of terrain factors in affecting changes in tundra regions.

The Yamal has very different landscapes from North American Arctic Transect

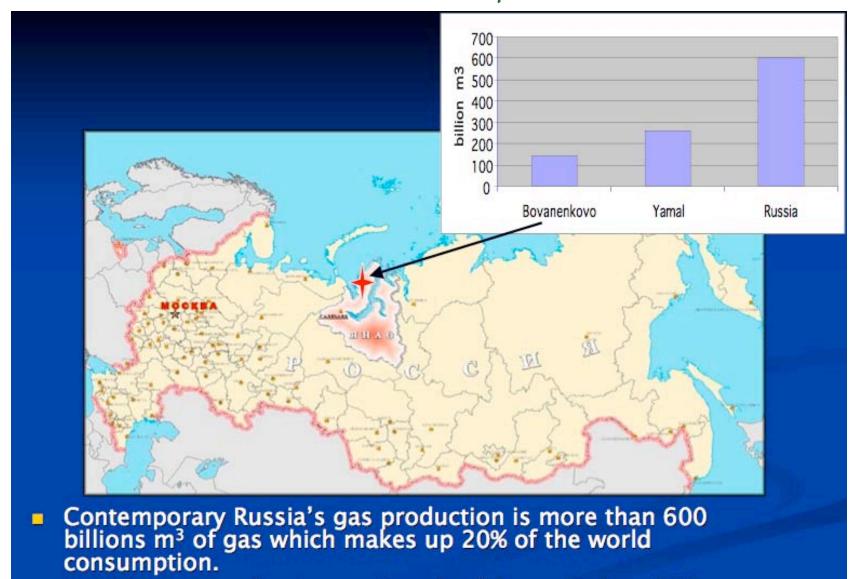
- Extraordinarily sensitive permafrost landscapes.
- Extensive human use of the land by nomadic Nentsy and by industry.
- Relatively lax regulatory control over hydrocarbon exploration and development.
- Heavy impact by reindeer.

Extraordinarily Sensitive Permafrost Landscapes

Extensive nutrient-poor surface sands with lichens that are easily overgrazed by reindeer.

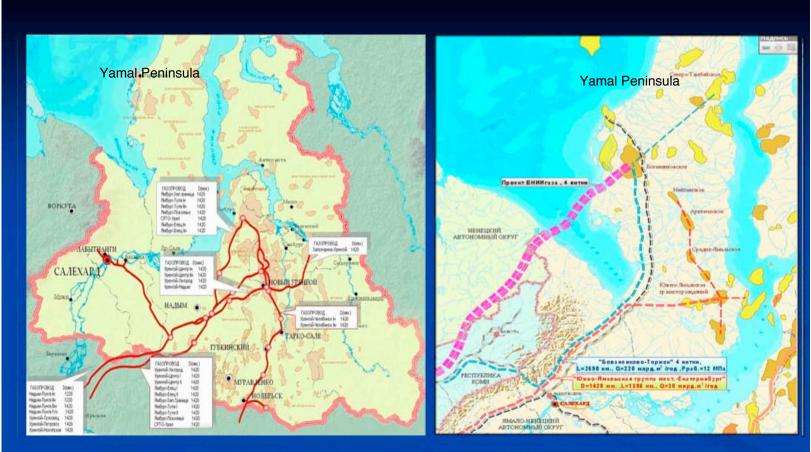
Underlain by permafrost with massive pure ice.

Extensive landslides are rapidly eroding the landscape.


This exposes salt-rich and nutrient-rich clays.

Complex vegetation succession process that results in willow-shrub tundra in the interior parts of the peninsula.

Photos: D.A. Walker and M. Liebman (upper right)


Yamal: Center of future gas production in Russia

 In 2030 gas production on Yamal will be as high as 250 -260 billions m³/yr.

Courtesy of A. Gubarkov

Large-scale development will occur once road, railroad and pipeline links to the south are built.

Existing and designed pipelines

 "Gazprom" has accepted the Yamal hydrocarbons transportation scheme of main pipeline across the Baidarata Bay of the Kara Sea. Four pipelines will transport 50-60 billions m³ of gas each.

Courtesy of A. Gubarkov

Relaxed Regulatory Environment

Photos: D.A. Walker

Extent of infrastructure of Bovanenkova Field compared to Prudhoe Bay

Bovanenkovo, F (Kumpula 2007)

Area of infrastructure (km^2)

2.1

4.3

0

2.9 (79 km)

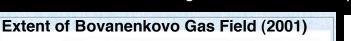
9.3 km²

24 km²

33.3 km²

448 km²

RU	North Slope, AK
	(NRC, 2003)
	24.2
	25.8
	12.2 (954 km)
	<u>1.2</u>
	63.4 km ²


7.14 km²

70.5 km²

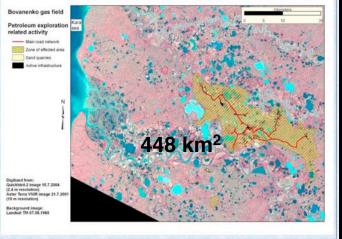
2,600 km²

Approximate total extent of infrastructure (perimeter, including currently enclosed unimpacted areas no longer accessible to herders)

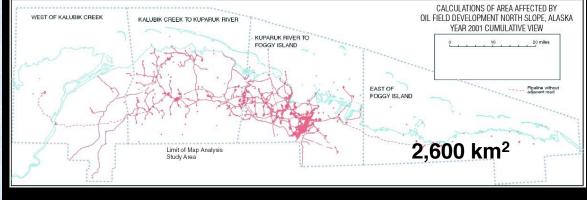
(major ORV trails, debris)

Construction pads

Roads (all types)


Total infrastructure

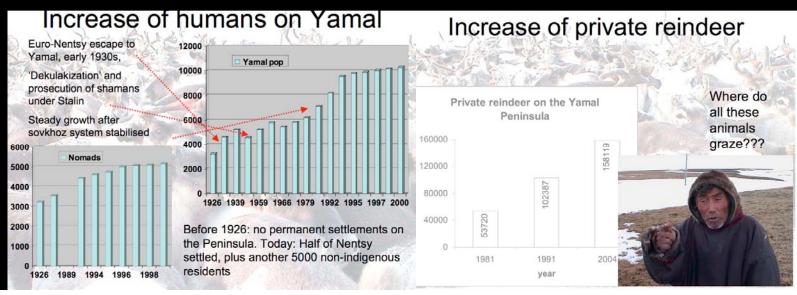
Other affected areas


TOTAL DETECTIBLE CHANGED AREA

Quarries

Air strips

Extent of the North Slope, AK development (2001)

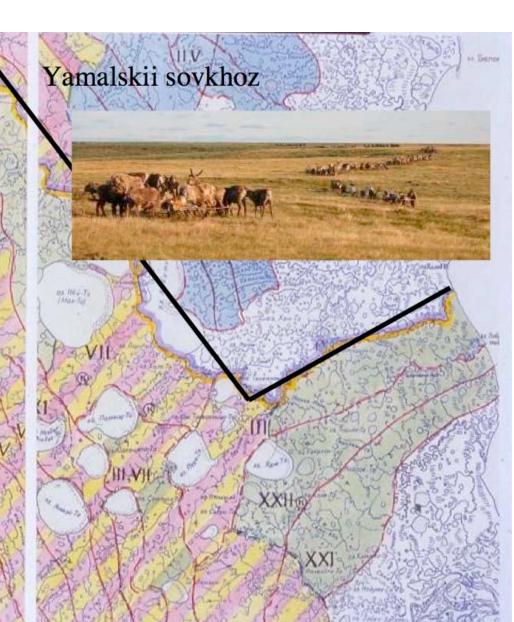

T. Kumpula: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008.

NRC, 2003. Cumulative Environmental Effects of the Oil and Gas Development on the Alaska North Slope.

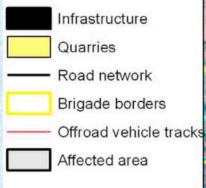
The Nentsy and their reindeer

Graphics: Florian Stammler: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008. Photos: D.A. Walker

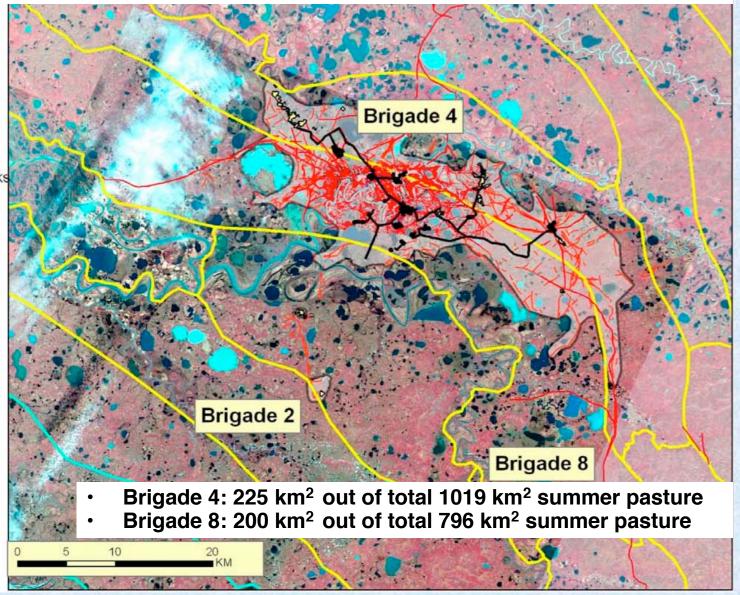
Effects of reindeer herding


Photos: Bruce Forbes

The Nentsy use the entire Yamal Península.



Analysis of impacts of resource extraction to pasturelands


Impacts of Bovanenkovo gas field to summer pasture of Brigades 4 and 8

Legend

Datasource: ASTER TERRA VNIR image 21.7.2001 (15 m resolution)

Quickbird-2 image 15.7.2004 (2.4 m resolution)

Timo Kumpula: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008.

Herders view:

Photo: D.A. Walker

- Threats from industrial development much greater than threats from climate change.
- However, they currently generally view the gas development positively because of increased economic opportunities (e.g. markets for reindeer, some perks from the industry).
- Moderate demands:
 - 1. Complete and timely reclamation of lands used during the technical work that are not industrial and have no facilities on them.
 - 2. Establishing and protecting corridors for movement between camps by people and reindeer herders.

(Zen'ko 2004, Stammler 2005).

Stammler, F. 2005. Reindeer Nomads Meet the Market: Culture, Property and Globalisation at the End of the Land. Litverlag-Halle Studies in the Antrhopology of Eurasia, Muenster.

Zen'ko, M. A. 2004. Contemporary Yamal: ethnoecological and ethnosocial problems. Anthropology & Archeology of Eurasia 42:7-63.

However, there is a lack of equity in discussions regarding land-use.

Pavel Orekhov and Nenets herder. Photo: D.A. Walker

- Despite an amazing ability to adapt to past climate, social, economic, and political upheavals in Russia, the Nentsy face difficult challenges with respect to adapting to industrial change because they lack title to their land.
- In Alaska and Canada, indigenous groups gained legal land claims. No such legal land rights exist for the Nentsy.
- Bruce Forbes. 2008. Equity, vulnerability and resilience in social-ecological systems: A contemporary example from the Russian Arctic. *Research in Social Problems and Public Policy*, 15: 203–236.

Effects of climate change: Analysis of biomass and NDVI trends across the climate gradient

Field data collected:

Soils

Plant Cover

NDVI & LAI

Ground temperatures

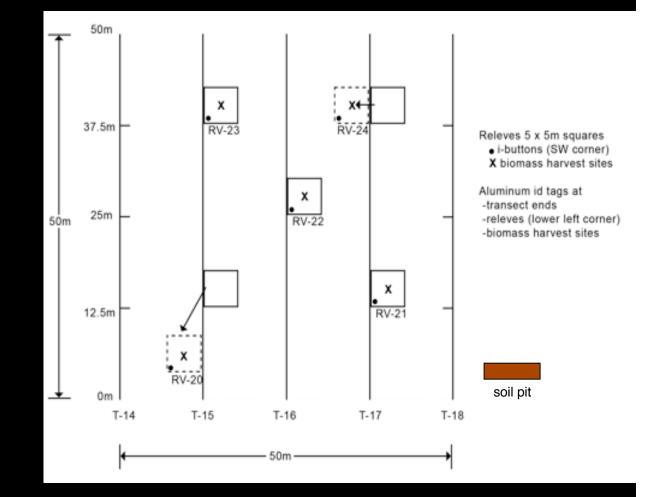
Active layer

Plant Biomass

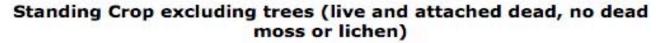
Data Report of the 2007 Expedition to Nadym, Laborovaya and Vaskiny Dachi, Yamal Peninsula Region, Russia

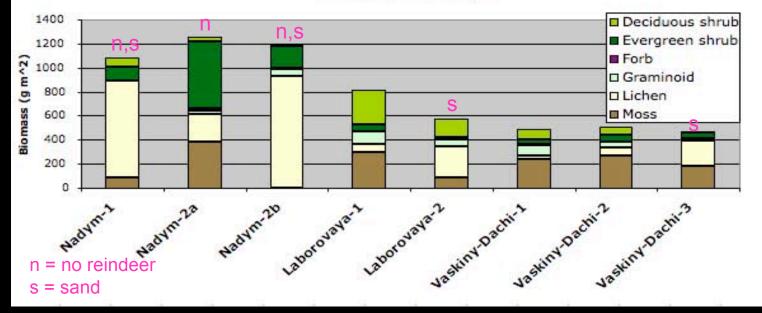
D.A. Walker, H.E. Epstein, M.E. Leibman, N.G. Moskalenko, J.P. Kuss, G.V. Matyshak, E. Kaärlejarvi, and E. Barbour

> Alaska Geobotany, Center Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775


> > January 2008

Funded by NASA Grant No. NNG6GE00A


http://www.geobotany.uaf.edu/yamal/documents/ yamal_2007_dr080211

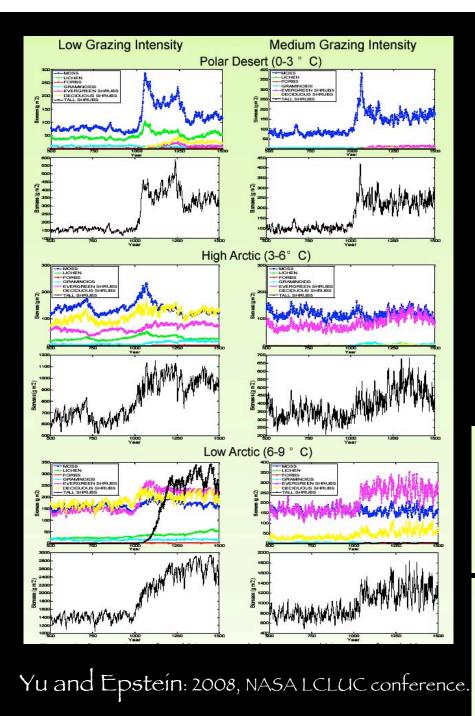

Typical sampling strategy

- 5 50-m transects
- 5 5 x 5-m plots
- 1 x 3-m soil pit

Bíomass along the Yamal transect

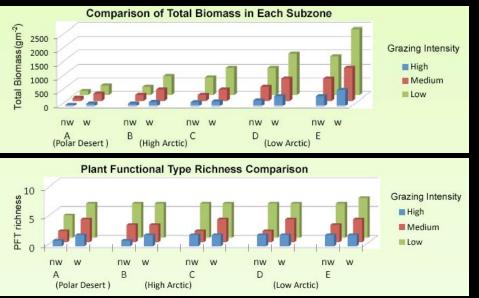
Climate trend:

2000–2300 g m⁻² at Nadym to about 1000–1300 g m⁻² at Vaskiny Dachi.


Effect of sandy soils:

- Sandy soils have 250–350 g m⁻² less biomass than comparable clayey sites
- Much more lichen biomass and less mosses and graminoids.

Effect of reindeer:


- Ungrazed sandy areas near Nadym over 900 g m⁻² of lichen
- Less than 200 g m⁻² in sandy areas where reindeer grazing has occurred annually.

Epstein et al: NASALCLUC meeting 2008.

Modeled productivity of PFTs on the Yamal

- ArcVeg model (Epstein et al. 2002)
- Examines succession of biomass for seven Arctic plant functional types.
- Five climate scenarios.
- · Warming vs. non-warming treatments.
- Three grazing intensities.
- Next steps will incorporate soil type and disturbance regimes (dust and complete removal of vegetation), relate to NDVI and develop regional extrapolations.

Some problems with existing arctic biomass data in the literature

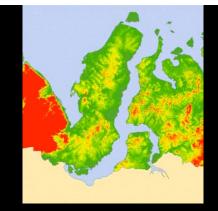
- Although trends in NDVI are clear, there are still no convincing ground-based studies of changes in Arctic plant biomass.
- Real vegetation type is often unknown.
- Soil and site factor information missing.
- Harvest methods not documented.
- Not georeferenced.
- Replication not documented.
- Not linked to NDVI, LAI, or other cover properties of the vegetation.
- Definitions of biomass components unclear.

"What is above-ground biomass?"

"What does NDVI really mean in tundra systems... particularly for reindeer and caribou?"

Some areas with low NDVI have high forage quality for reindeer.

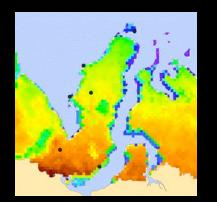
Bright green areas may be dominated by species such as alder or dwarfbirch, which have abundant toxic secondary plant compounds that protect them from grazing.



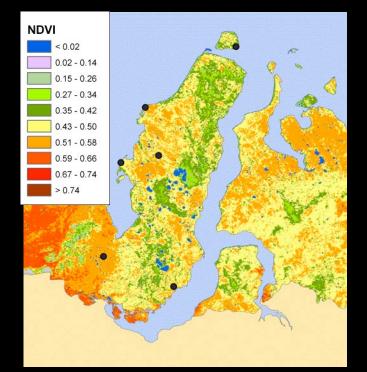
Lichen-woodland at Nadym

Shrub tundra at Laborovaya

Analysis of NDVI in relation to GIS databases

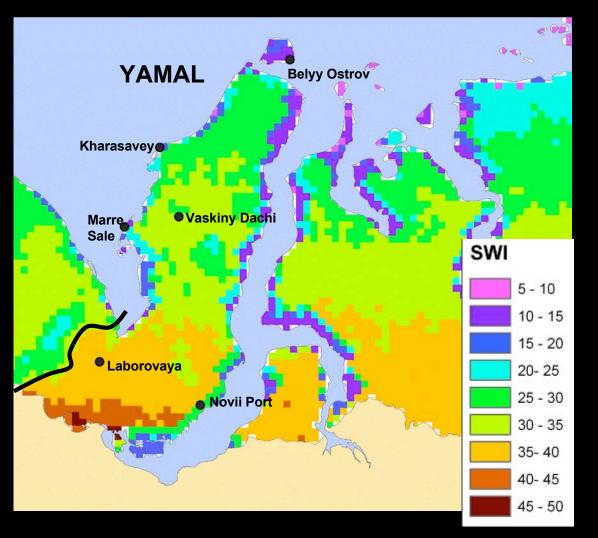

elevation

landschaft



lithology

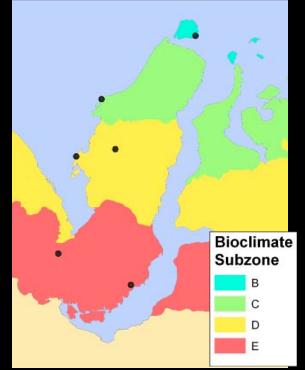
lake area



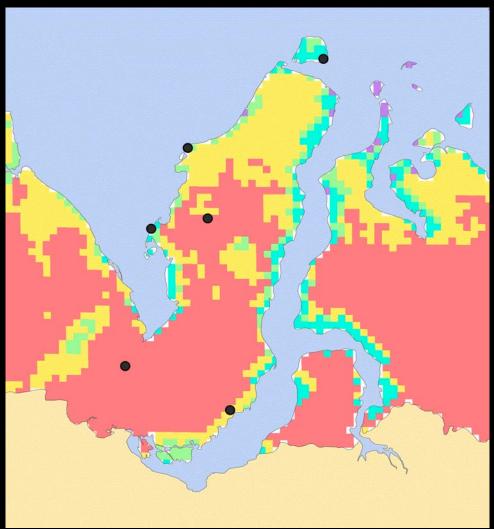
AVHRR-Derived NDVI of the Yamal Península

Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

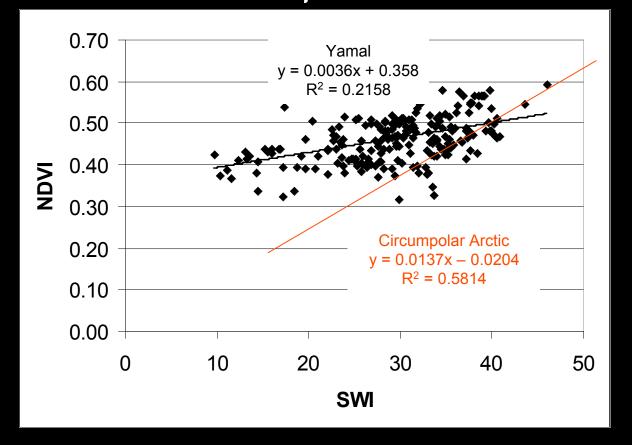
SWI


Land-surface summer warmth on the Yamal

Summer warmth index (SWI) of Yamal Peninsula, based on AVHRR satellite-derived land-surface temperatures (mean of 1982-2003, Comiso).


Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

Reevaluation of circumpolar zonal boundaries using AVHRR LST data


Bioclimate subzones as mapped on the Circumpolar Arctic Vegetation Map

- Colder coastal strips
- Interior areas warmer
- Mountains colder

Bioclimate subzones as mapped by SWI

NDVI vs. Summer Warmth on the Yamal compared to the Círcumpolar Arctíc

 Arctic as a whole has much stronger correlations between NDVI and SWI.

Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

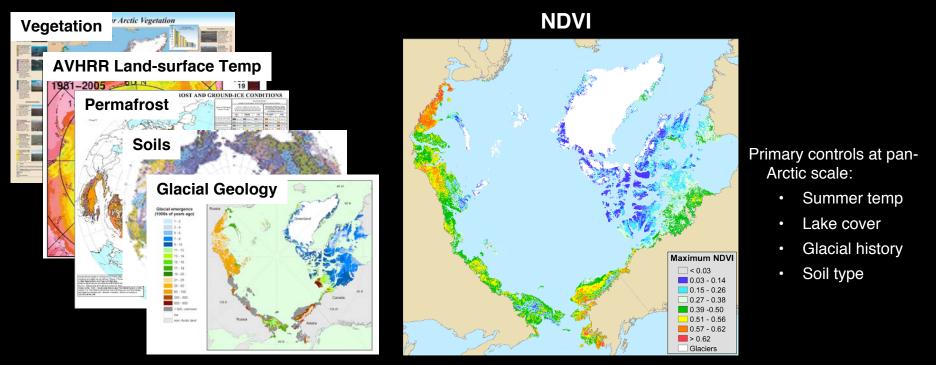
Comparison of actual NDVI and predicted NDVI based on SWI/NDVI relationship for entire Arctic

Areas with less NDVI than expected are brown, areas with more NDVI than expected are green.

Most of the peninsula is greener than we expected. 0

< - 0.3

> + 0.3


Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

Extensive willow shrublands due to landslide disturbances

Círcumpolar Analysis of NDVI patterns: Martha Raynolds Ph.D. thesis

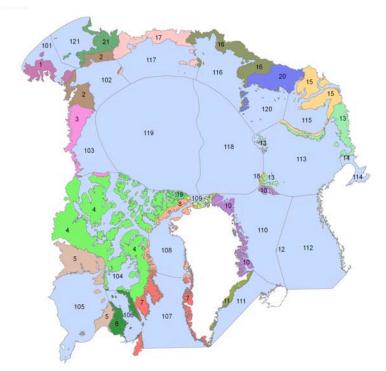
Circumpolar Data Sets

Raynolds, M.K., D. A. Walker and H. A. Maier. 2006. NDVI patterns and phytomass distribution in the circumpolar Arctic. *Remote Sensing of Environment* 102:271–28.

Raynolds, M. K., J. C. Comiso, D. A. Walker, D. Verbyla. 2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. *Remote Sensing of Environment* 112:1884–1894.

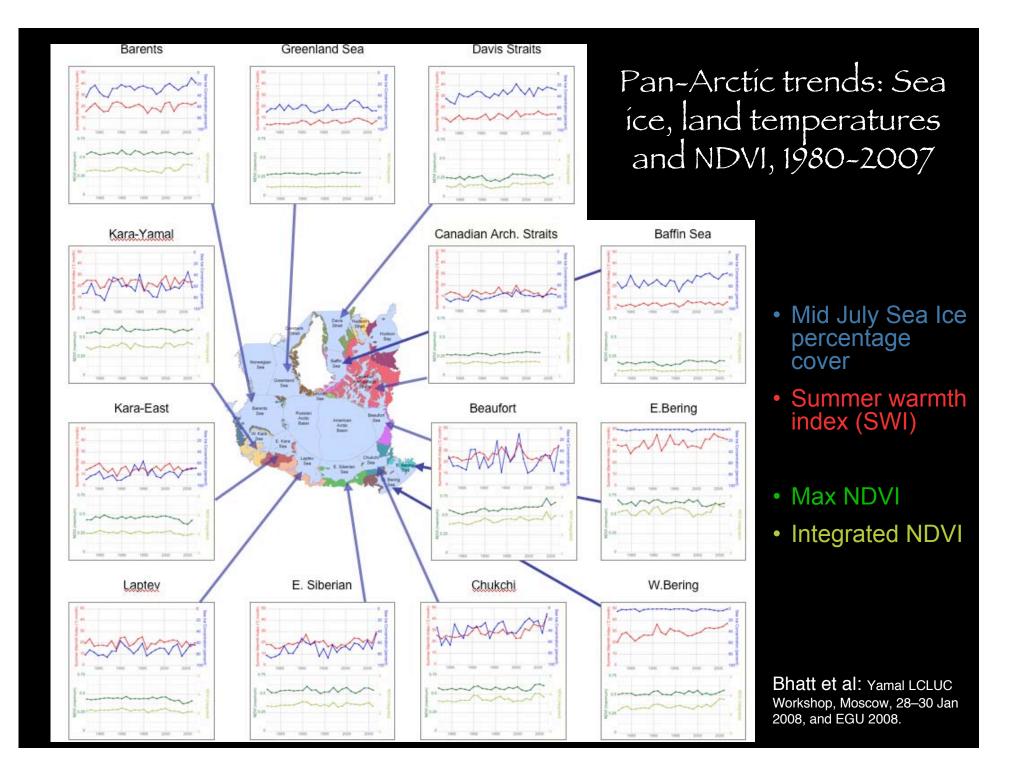
Raynolds, M. K. and Walker, D. A. 2008. Relationship of permafrost characteristics, NDVI, and arctic vegetation types. *Proceedings of the Ninth International Conference on Permafrost*. 1469–1474.

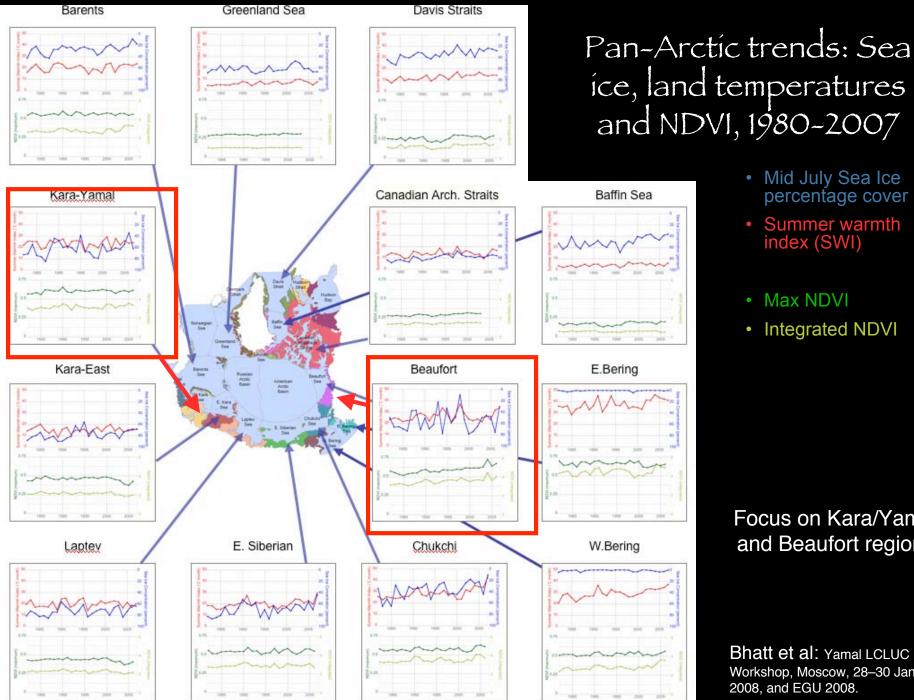
Raynolds, M. K. and Walker, D. A. 2008 (submitted): The effects of deglaciation on circumpolar distribution of arctic vegetation. *Canadian Journal of Remote Sensing*.


Raynolds, M.K. 2009 in prep. Synthesis of circumpolar controls on NDVI.

Analysis of sea-ice, land surface temperature and NDVI trends:

Uma Bhatt, D.A. Walker, M.K. Raynolds, J. Comiso

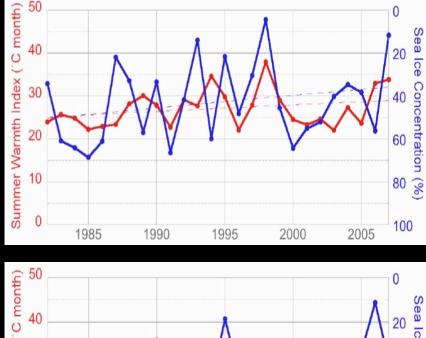

Division of Arctic Ocean and associated land masses according to Russian Arctic Atlas


101 & 1* East Bering Sea 102 & 2 Chukchi Sea 103 & 3 Beaufort Sea 104 & 4 Canadian Arch. Straits 105 & 5 Hudson Bay 106 & 6 Hudson Strait 107 & 7 Davis Strait 108 & 8 Baffin Sea 109 & 9 Lincoln Sea 110 & 10 Greenland Sea 111 & 11 Denmark Strait 112 & 12 Norwegian Sea 113 & 13 Barents Sea 114 & 14 White Sea 115 & 15* West Kara Sea 116 & 16 Laptev Sea 117 & 17 East Siberian Sea 118 & 18 Russian Arctic Basin 119 & 19 American Arctic Basin 120 & 20* East Kara Sea 121 & 21* West Bering Sea *Treshnikov basin divided for purposes of this study

- Analysis of 50-km buffers seaward and landward along each sea coast and also for entire tundra area below 330 m.
- 1982–2007 AVHRR data to analyze trends in sea ice concentration, LST, and NDVI.

Polar stereographic projection (J. Comiso) Map by M. Raynolds, March 2008

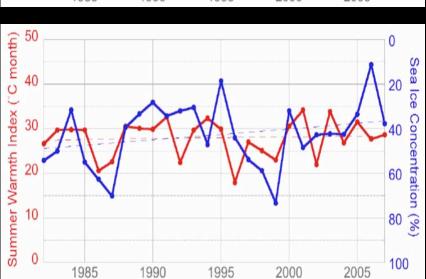
- Mid July Sea Ice percentage cover
- Summer warmth index (SWI)
- Max NDVI
- Integrated NDVI


Focus on Kara/Yamal and Beaufort regions

Bhatt et al: Yamal LCLUC Workshop, Moscow, 28-30 Jan 2008, and EGU 2008.

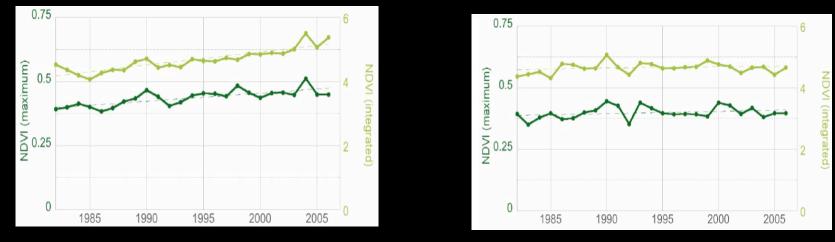
Sea-íce and temperature trends ín Beaufort Sea and Kara/Yamal region of Russía, 1982-2007

Beaufort


Negative sea-ice trend (-29%) correlated with positive temperature trend (+16%) and very high interannual variability.

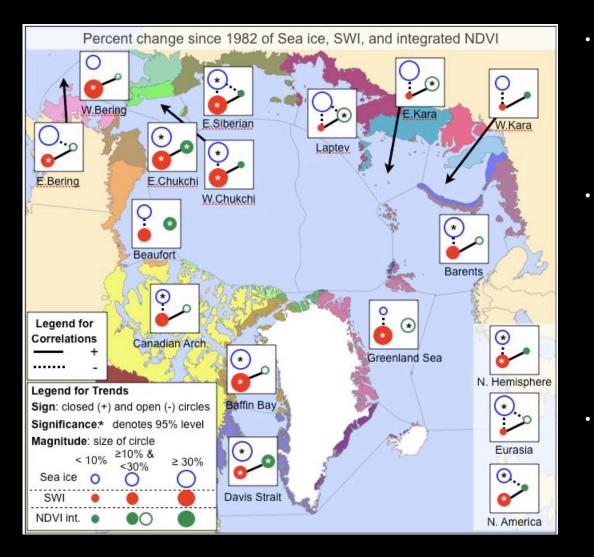
Kara/Yamal

Negative sea-ice trend (-25%) but nearly flat temperature trend (+4%).


None of the trends are significant at p = 0.05 because of high interannual variability.

NDVI trends in Beaufort Sea and Kara/Yamal region of Russia

Beaufort


Kara/Yamal

- Greater change in Beaufort Region maximum NDVI (+ 24%) vs. Kara/Yamal (+ 3%) most likely due to more positive trend in ground surface temperatures in the Beaufort region during the period of record.
- Beaufort trends are significant at p = 0.05.

Bhatt et al. EGU, Vienna, Proceedings, 2008.

Summary of trends

Bhatt et al., in progress, 2008.

- Sea ice is strongly decreasing throughout the Arctic except the Greenland Sea. The strongest most significant trends are in the E. Siberian to E. Chukchi region.
- Summer warmth is increasing most strongly in the Beringian region between the E. Siberian Sea and the E. Chukchi and also in the Greenland Sea and Baffin Bay. Relatively small increases are seen between the W. Kara and Laptev seas.
- NDVI is increasing most strongly in the E. Chukchi and Beaufort regions, and also Davis Straight. Negative trends are occurring in several areas, most notable along the E. Kara Sea and Laptev Sea.

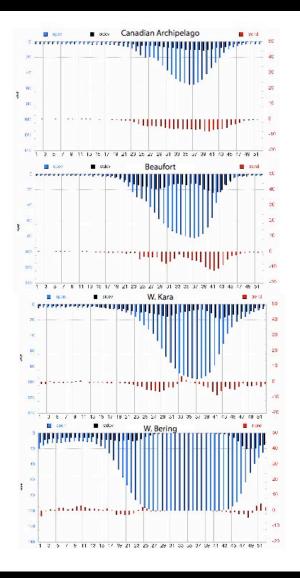
Correlations with climate indices

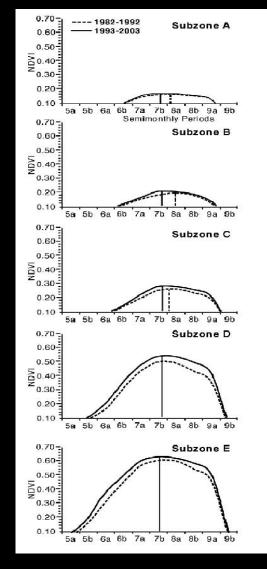
50-km zones with climate indices during preceding winter (DJFM) Red values are positive correlations, blue are negative. Bold values are significant at 90% level or greater.

	SWI				Sea Ice				Integrated NDVI			
Climate index	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI
Barents	.38	.3	0	.14	-0.2	3	.42	20	.11	.20	24	.23
Kara-Yamal	.27	.12	0	.14	54	57	.48	34	0	.14	29	.40
Kara-East	2	40	14	2	0	0	0	0	0	13	0	.16
Laptev	.33	.19	31	.15	56	53	.43	17	0.60	.41	41	.27
E.Siberian	.14	.33	43	.32	27	56	.49	26	0.19	.45	63	.49
Chukchi	-1	.12	28	.37	.19	26	.20	11	17	0	26	.25
W. Bering	0	0	26	.13	11	24	.14	0	0	0	22	0
E. Bering	0	0	11	.22	0	25	.10	0	0	0	0	.15
Beaufort	.48	.40	0	.11	0	0	27	.16	12	.10	25	.22
Canadian Arch	.19	.13	0	0	.14	0	0	0	0	.14	16	.15
Davis Straits	2	0	0	.15	.18	0	0	11	31	0	0	.10
Baffin Sea	0	0	15	.16	0	0	.15	17	0	0	0	.24
Grnland Sea	1	.14	10	.19	.43	.26	0	0	.13	0	0	0

• Sea ice is generally negatively correlated with the Arctic Oscillation and positively correlated with the Pacific Decadal Oscillation.

 SWI and NDVI are generally positively correlated with the AO and negatively correlated with the PDO.

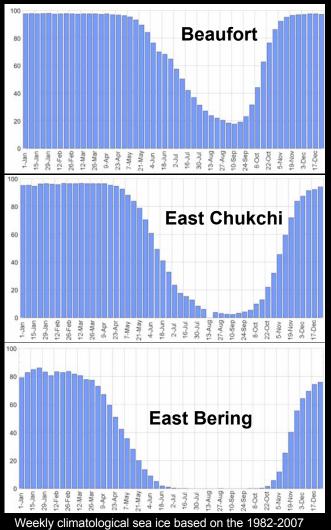

 Correlations require more thought in terms of mechanisms. Analysis of wind correlations with NDVI and SWI are in progress.


Bhatt et al., in progress, 2008.

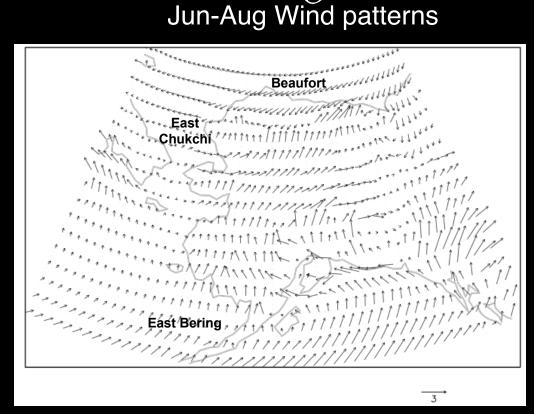
Seasonality trends

Sea-ice concentration

NDVI



Jia et al. in press, JGR-Biogeosciences


Bhatt et al. in prep., Earth Interactions

Controls on seasonality

Biweekly sea-ice concentration in Arctic Alaska Seas

period for the 50-km coastal ocean domain.

NARR long term climatological 10-m vector winds (1979-2000) averaged for June-August in m s-¹. Data for image provided by the NOAA-ESRL Physical Sciences Division, Boulder Colorado from their Web site at <u>http://www.cdc.noaa.gov</u>.

Future analyses will examine the controls of sea-ice, winds, snow, atmospheric circulation and ocean circulation on seasonal patterns of NDVI. Proposed to NSF by Epstein, Bhatt, Walker, and Steele.

Cumulative effects on the Yamal

Resource development:

- Indirect (unplanned) impacts (such as ORV trails, flooding from roads) are greater than the direct (planned) impacts (infrastructure).
- Roads and pipelines: serious barriers to migration corridors.
- Effects will increase as new field are developed.

Landscape factors and terrain sensitivity:

• High potential for extensive landscape effects due to unstable sandy soils, and extremely ice-rich permafrost near the surface.

Reindeer herding:

- Land withdrawals by industry, increasing Nenets population, and larger reindeer herds are all increasing pressure on the rangelands.
- Herders view: Threats from industrial development much greater than threats from climate change. Big concern is lack of power during negotiations.
- They currently generally view the gas development positively because of increased economic opportunities.

Climate change:

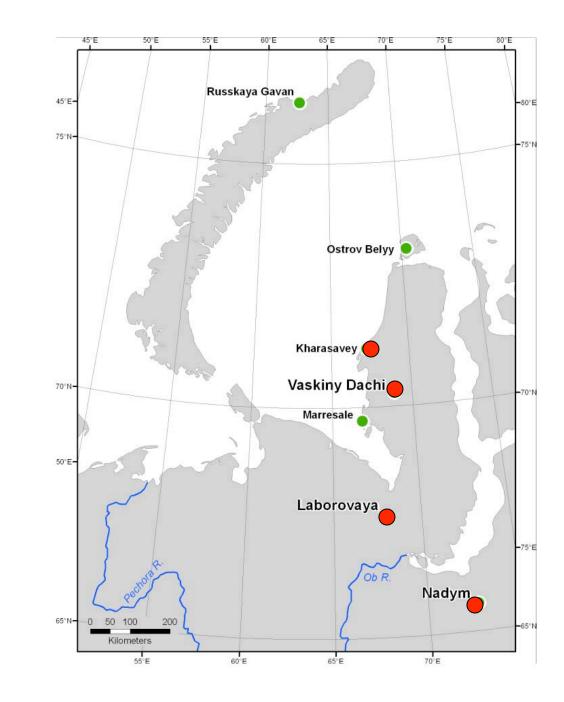
- Satellite data suggest that there has been only modest summer land-surface warming and only slight greening changes across the Yamal during the past 24 years. (Trend is much stronger in other parts of the Arctic, e.g. Beaufort Sea.)
- Kara-Yamal: negative sea ice, positive summer warmth and positive NDVI are correlated with positive phases of the North Atlantic Oscillation and Arctic Oscillation.

Círcumpolar Summary

- **Temperature sea ice linkages:** Strong linkages have been demonstrated between reduced sea-ice concentrations and increased land-surface temperatures.
- NDVI trends: Large regional differences in the NDVI trends:
 - Strongly positive trend in the northern Beringia region of E. Siberia, Chukchi, and Beaufort seas. This is the region with the strongest recent reductions in sea-ice concentrations.
 - Slight negative trend in northern Eurasia (E. Kara, Laptev seas).
- **NDVI controls:** Ground-based and remote-sensing studies along climate transects in North America and Yamal have very different spatial patterns of NDVI and factors affecting the NDVI in each region:
 - North America: age of glacial surfaces, differences in substrates (acidic vs. nonacidic soils), strong temperature controls.
 - Yamal: Large effect of natural disturbance, sandy vs. clayey substrates, heavily grazed systems (but still unknown what the actual effect of reindeer on NDVI is), weaker temperature control.
- **Climate drivers:** Throughout the Arctic including the Beaufort and Yamal, the general trend is positive summer warmth and NDVI with positive phases of the North Atlantic Oscillation and Arctic Oscillation, and negative correlations with positive phases of the Pacific Decadal Oscillation. The positive phase of NAO and AO is consistent with a warmer winter Arctic, reduced summer sea ice, increased SWI and increased integrated NDVI.
- Replicated long-term vegetation studies and standardized protocols: Needed across the Arctic and coordinated with other terrestrial monitoring of climate, permafrost, active layers, ITEX etc. — especially in areas currently surrounded by perennial sea ice and other areas where the changes are occurring most rapidly (e.g. Beringia region).

Yamal Transect

2007


- Nadym
- Laborovaya
- Vaskiny Dachi

2008

Kharasavey

2010 (proposed)

- Ostrov Belyy
- Russkaya Gavan (or Franz Josef Land)
- Marresale (or site in N. Yamal)

Collaborators

Uma Bhatt, Gary Kofinas, Jozsef Geml, Martha Raynolds, Vladimir Romanovsky, Lee Taylor, Skip Walker: University of Alaska Fairbanks

Marina Liebman, Nataliya Moskalenko, Pavel Orekov, Artem Khomotov, Anatoly Gubarkov: *Earth Cryosphere Laboratory, Moscow, Russia*

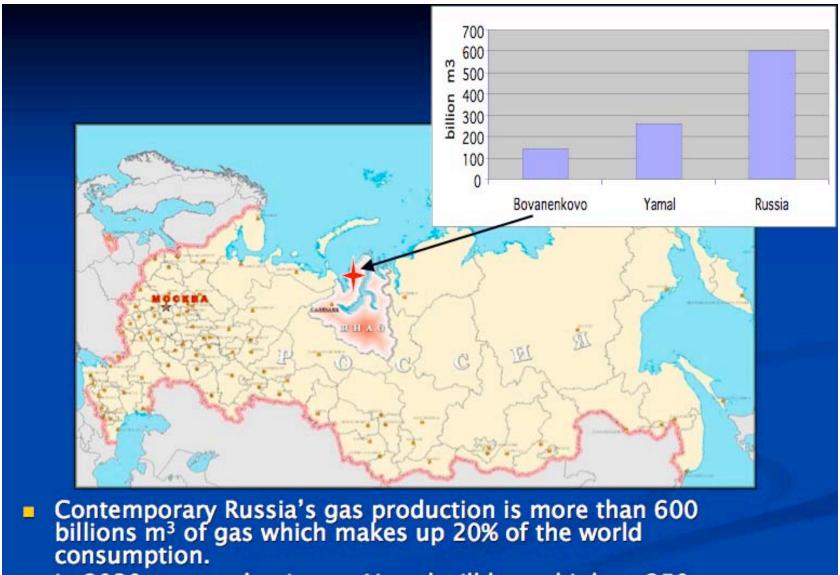
Bruce Forbes, Florian Stammler, Timo Kumpula, Elina Karlejaärvi: *Arctic Centre, Rovaniemi, Finland* Howie Epstein: *University of Virginia* Jiong Jia: *REC-TEA, Chinese Academy of Science* Joey Comiso: *NASA Goddard*

9MAA

- Examines the linkages between greening trend range and forage for the reindeer of the Nenets and the regional sea-ice conditions.
- Field research and modeling in all 5 arctic biocli subzones.
- Linked to the Circumpolar Arctic Rangifer Monit Assessment (CARMA) project, and the Cold La Process in NEESPI (CLPN). NEESPI = Norther Earth Science Partnership Initiative.

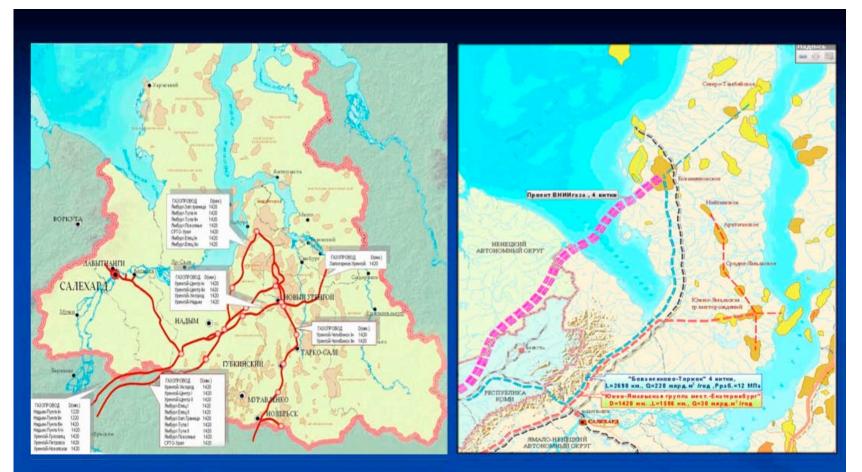
The Yamal

Typical of the sorts of changes that are likely to become much more common in tundra areas of Russia and the circumpolar region within the next decade.


- Currently, large areas of wilderness with no roads or development, but..
- large-scale gas and oil potential,
- extraordinarily sensitive permafrost environment
- traditional pasturelands for the nomadic Yamal Nenets people,
 - rapid changes in climate.

Goal: Develop tools using remote sensing and modeling to better predict the cumulative effects of resource development, climate change, reindeer herding, and the role of terrain factors in affecting changes in tundra regions.

The Yamal has very different landscapes from North American Arctic Transect


- Extensive human use of the land by nomadic Nentsy and by industry.
- Extraordinarily sensitive permafrost landscapes.
- Relatively lax regulatory control over hydrocarbon exploration and development.
- Heavy impact by reindeer.

Yamal: Center of future gas production in Russia

 In 2030 gas production on Yamal will be as high as 250 -260 billions m³/yr.

Courtesy of A. Gubarkov

Existing and designed pipelines

 "Gazprom" has accepted the Yamal hydrocarbons transportation scheme of main pipeline across the Baidarata Bay of the Kara Sea. Four pipelines will transport 50-60 billions m³ of gas each.

Courtesy of A. Gubarkov

Relaxed Regulatory Environment

Photos: D.A. Walker

Extent of infrastructure of Bovanenkova Field compared to Prudhoe Bay

Bovanenkovo, F (Kumpula 2007)

Area of infrastructure (km^2)

2.1

4.3

0

2.9 (79 km)

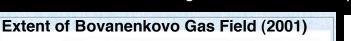
9.3 km²

24 km²

33.3 km²

448 km²

RU	North Slope, AK
	(NRC, 2003)
	24.2
	25.8
	12.2 (954 km)
	<u>1.2</u>
	63.4 km ²


7.14 km²

70.5 km²

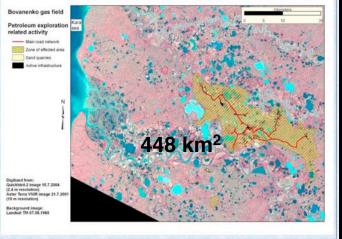
2,600 km²

Approximate total extent of infrastructure (perimeter, including currently enclosed unimpacted areas no longer accessible to herders)

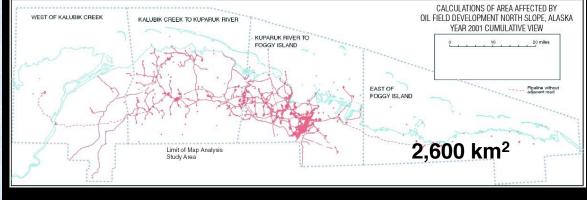
(major ORV trails, debris)

Construction pads

Roads (all types)


Total infrastructure

Other affected areas


TOTAL DETECTIBLE CHANGED AREA

Quarries

Air strips

Extent of the North Slope, AK development (2001)

T. Kumpula: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008.

NRC, 2003. Cumulative Environmental Effects of the Oil and Gas Development on the Alaska North Slope.

Extraordinarily Sensitive Permafrost Landscapes

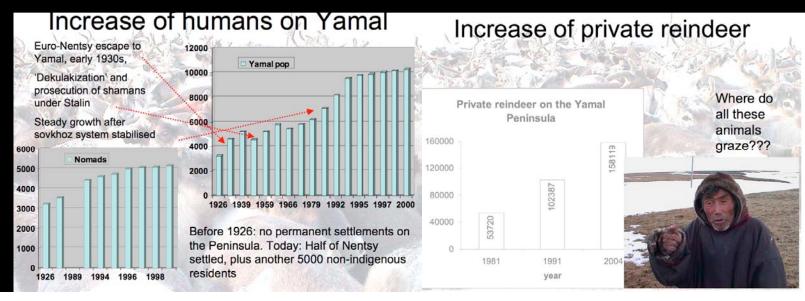
Extensive nutrient-poor surface sands.

Underlain by massive pure ice,

Subject to erosion and landslides,

That expose salt-rich and nutrient-rich clays, leading to

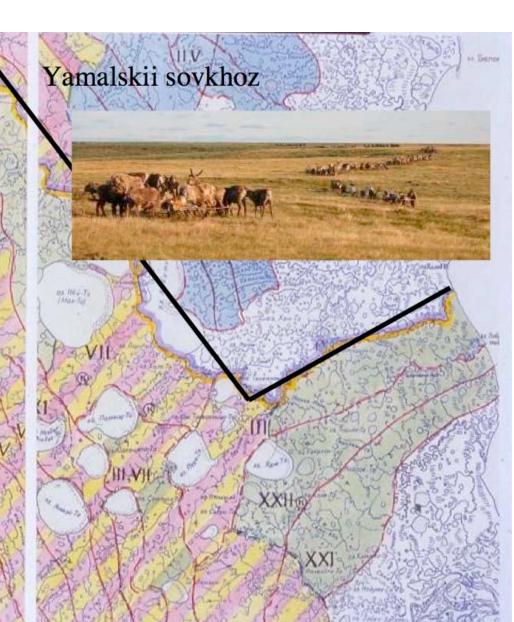
Complex successional process that results in willow-shrub tundra in the interior parts of the peninsula.


Photos: D.A. Walker and M. Liebman (upper right)

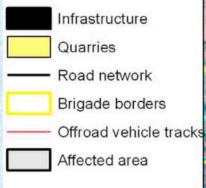
The Nentsy and their reindeer

Graphics: Florian Stammler: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008. Photos: D.A. Walker

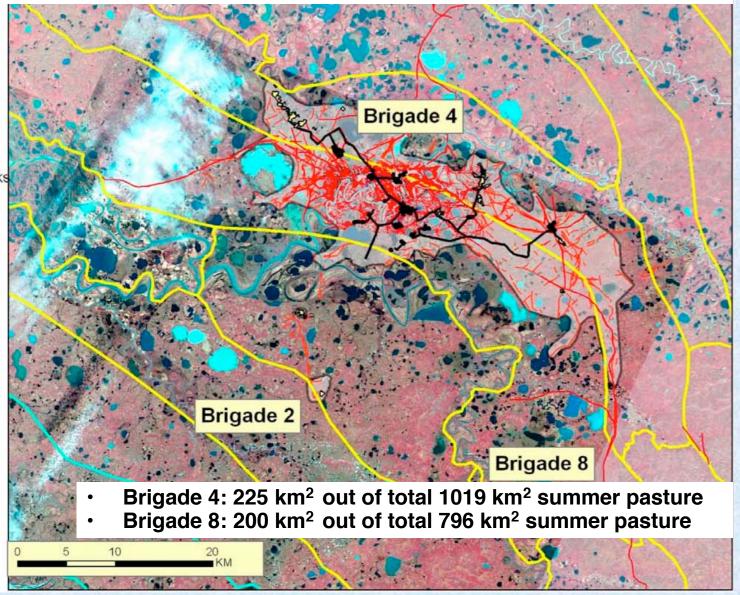
Effects of reindeer herding


Photos: Bruce Forbes

The Nentsy use the entire Yamal Península.



Analysis of impacts of resource extraction to pasturelands


Impacts of Bovanenkovo gas field to summer pasture of Brigades 4 and 8

Legend

Datasource: ASTER TERRA VNIR image 21.7.2001 (15 m resolution)

Quickbird-2 image 15.7.2004 (2.4 m resolution)

Timo Kumpula: Yamal LCLUC Workshop, Moscow, 28–30 Jan 2008.

Working with sociologists

Florian Stammler interviewing members of Nenets brigade. Combining remote sensing and traditional knowledge.

Herders view:

- Land withdrawals by industry, increasing Nenets population, and larger reindeer; herds are all increasing pressure on the rangelands.
- Threats from industrial development much greater than threats from climate change.
- They generally view the gas development positively because of increased economic opportunities.

Photo: Bruce Forbes

Pavel Orekhov discussing parka technology with Nenets herder.

Photo: D.A. Walker

Analysis of biomass and NDVI trends across the climate gradient

Field data collected:

Soils

Plant Cover

NDVI & LAI

Ground temperatures

Active layer

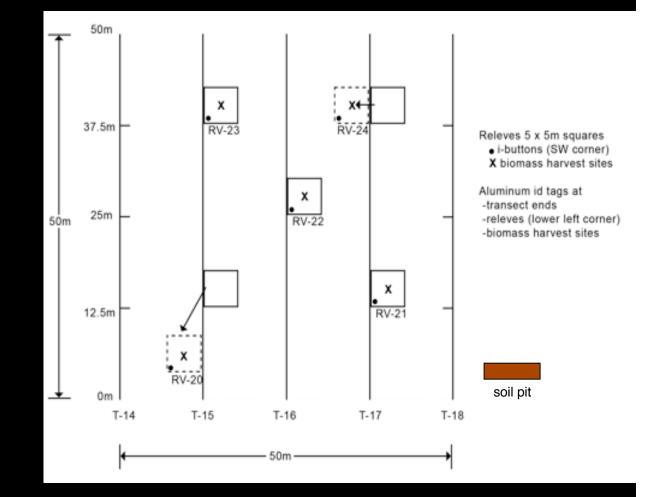
Plant Biomass

Data Report

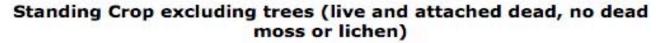
Data Report of the 2007 Expedition to Nadym, Laborovaya and Vaskiny Dachi, Yamal Peninsula Region, Russia

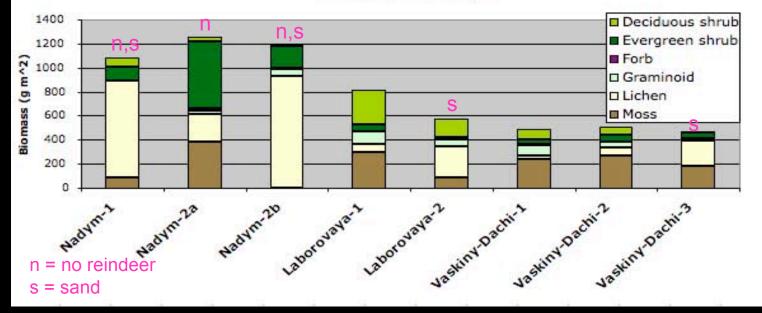
D.A. Walker, H.E. Epstein, M.E. Leibman, N.G. Moskalenko, J.P. Kuss., G.V. Matyshak, E. Kaärlejarvi, and E. Barbour

> Alaska Geobotany, Center Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775


> > January 2008

Funded by NASA Grant No. NNG6GE00A


http://www.geobotany.uaf.edu/yamal/documents/ yamal_2007_dr080211

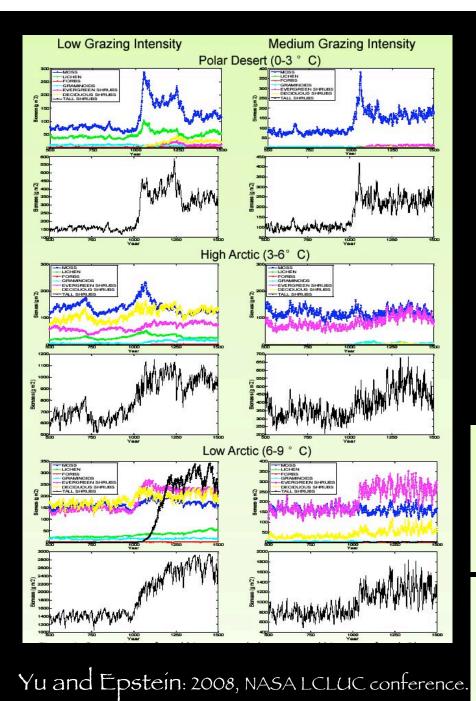

Typical sampling strategy

- 5 50-m transects
- 5 5 x 5-m plots
- 1 x 3-m soil pit

Bíomass along the Yamal transect

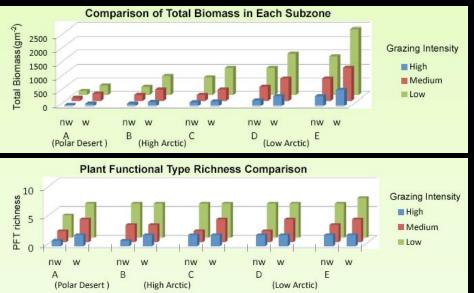
Climate trend:

2000–2300 g m⁻² at Nadym to about 1000–1300 g m⁻² at Vaskiny Dachi.

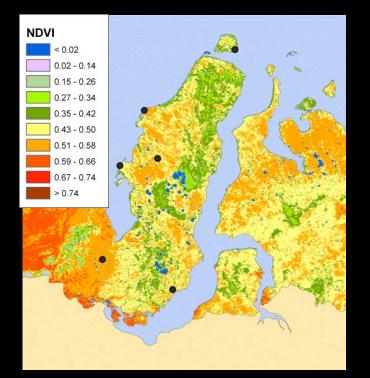

Effect of sandy soils:

- Sandy soils have 250–350 g m⁻² less biomass than comparable clayey sites
- Much more lichen biomass and less mosses and graminoids.

Effect of reindeer:

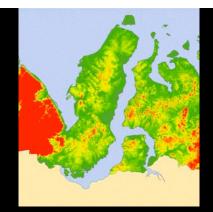

- Ungrazed sandy areas near Nadym over 1000 g m⁻²
- Less than 250 g m⁻² in sandy areas where reindeer grazing has occurred annually.

Epstein et al: NASALCLUC meeting 2008.



Modeled productivity of PFTs on the Yamal

- ArcVeg model (Epstein et al. 2002)
- Examines succession of biomass for seven Arctic plant functional types.
- Five climate scenarios.
- Warming vs. non-warming treatments.
- Three grazing intensities.
- Next steps will incorporate soil type and disturbance regimes (dust and complete removal of vegetation), relate to NDVI and develop regional extrapolations.

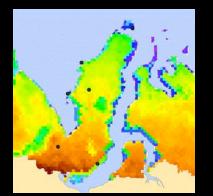


Analysis of remotely sensed data and regional data in GIS databases

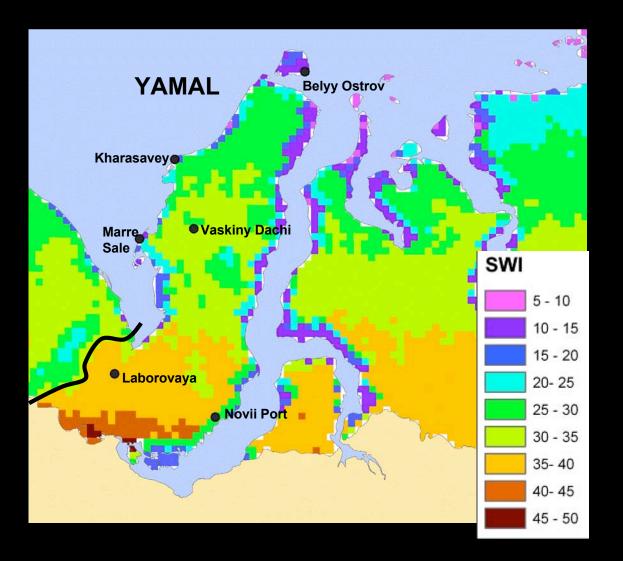
AVHRR-Deríved NDVI of the Yamal Península

Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

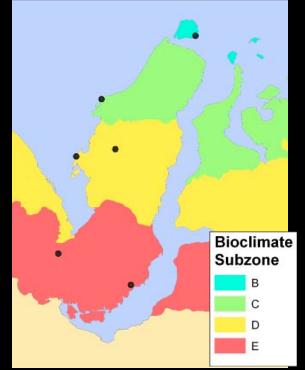
elevation


lithology

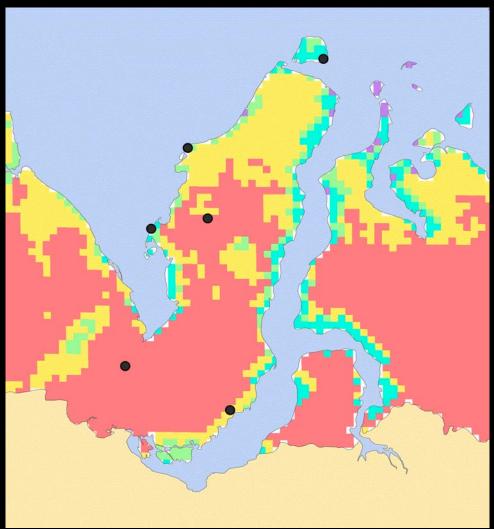
landschaft



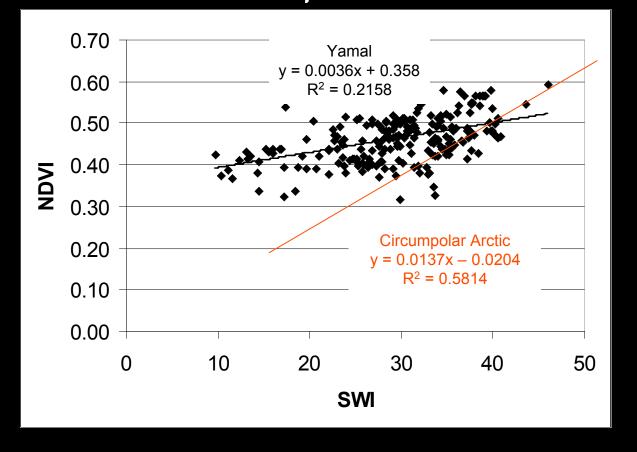
veget-id


SWI

lake area


Summer warmth index (SWI) of Yamal Peninsula, based on satellitederived land-surface temperatures (mean of 1982-2003, Comiso).

Reevaluation of circumpolar zonal boundaries using AVHRR LST data


Bioclimate subzones as mapped on the Circumpolar Arctic Vegetation Map

- Colder coastal strips
- Interior areas warmer
- Mountains colder

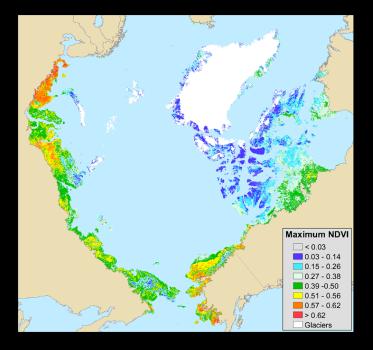
Bioclimate subzones as mapped by SWI

NDVI vs. Summer Warmth on the Yamal compared to the Círcumpolar Arctíc

- Arctic as a whole has steeper increase of NDVI with SWI and much stronger correlations.
- Possibly due to a combination of factors:
 - High disturbance regimes and abundance of shrubs on landslides.
 - Effects of grazing.
 - Nutrient poor soils on uplands.
 - Increase in NDVI on better drained soils and higher elevations toward the south on the Yamal.

Comparison of actual NDVI and predicted NDVI based on SWI/NDVI relationship for entire Arctic

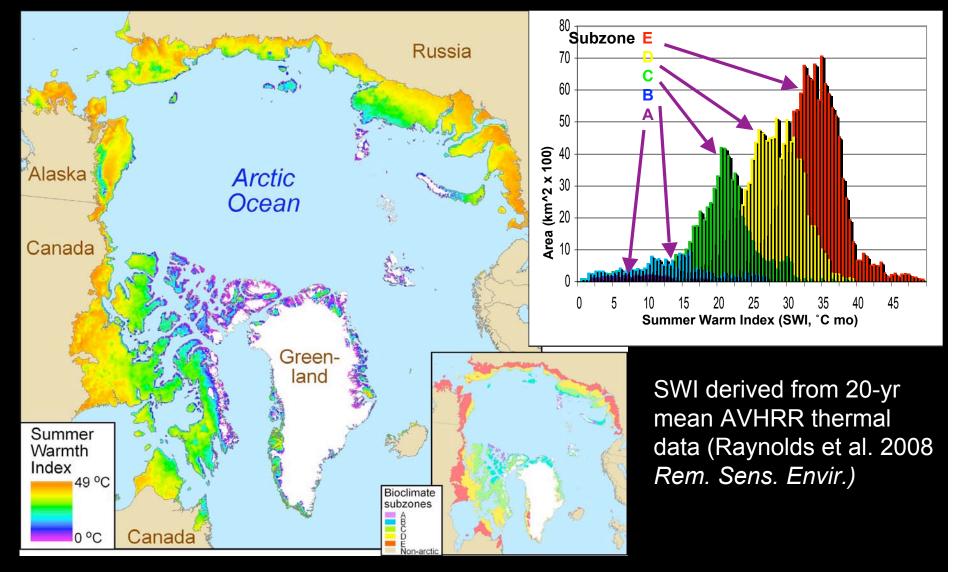
Areas with less NDVI than expected are brown, areas with more NDVI than expected are green.


> > + 0.3 0 < - 0.3

Martha Raynolds: Yamal LCLUC meeting, Moscow 28-31 Jan 2008.

Analysis of Circumpolar patterns of NDVI

Martha Raynolds: Ph.D. Thesis

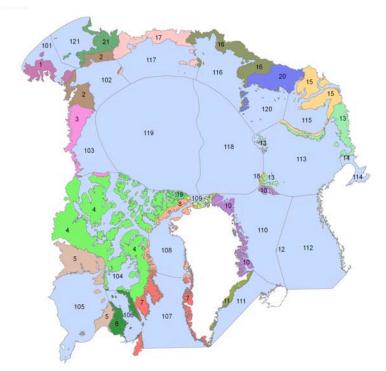

- Raynolds, M.K., D. A. Walker and H. A. Maier. 2006. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment 102:271–28.
- Raynolds, M. K., J. C. Comiso, D. A. Walker, D. Verbyla. 2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment 112:1884–1894.
- Raynolds, M. K. and Walker, D. A. 2008. Relationship of permafrost characteristics, NDVI, and arctic vegetation types. Proceedings of the Ninth International Conference on Permafrost: 1469–1474.
- Raynolds, M. K. and Walker, D. A. 2008 (submitted): The effects of deglaciation on circumpolar distribution of arctic vegetation. Canadian Journal of Remote Sensing.

Controls on Círcumpolar NDVI patterns

Summer land-surface temperature as shown by the summer warmth index(SWI)

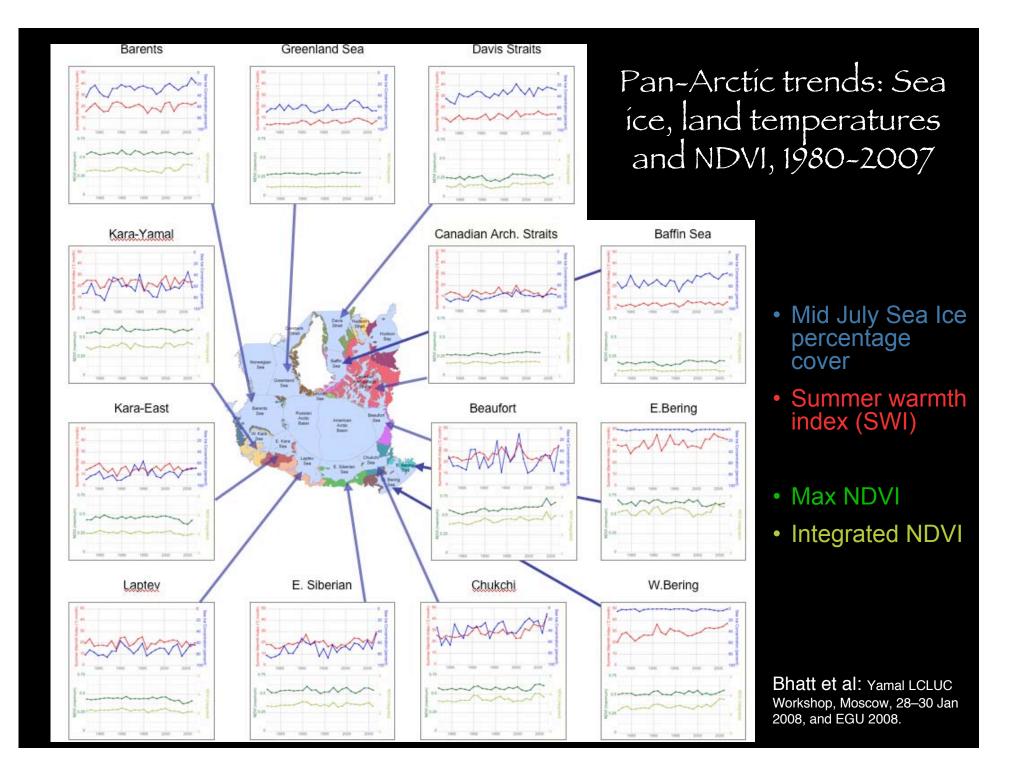
Expected NDVI value as calculated by SWI regression equation

Areas with less NDVI than expected are brown, areas with more NDVI than expected are green.



Analysis of sea-ice, land surface temperature and NDVI trends:

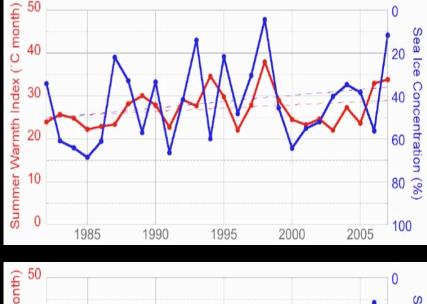
Uma Bhatt, D.A. Walker, M.K. Raynolds, J. Comiso


Division of Arctic Ocean and associated land masses according to Russian Arctic Atlas

101 & 1* East Bering Sea 102 & 2 Chukchi Sea 103 & 3 Beaufort Sea 104 & 4 Canadian Arch. Straits 105 & 5 Hudson Bay 106 & 6 Hudson Strait 107 & 7 Davis Strait 108 & 8 Baffin Sea 109 & 9 Lincoln Sea 110 & 10 Greenland Sea 111 & 11 Denmark Strait 112 & 12 Norwegian Sea 113 & 13 Barents Sea 114 & 14 White Sea 115 & 15* West Kara Sea 116 & 16 Laptev Sea 117 & 17 East Siberian Sea 118 & 18 Russian Arctic Basin 119 & 19 American Arctic Basin 120 & 20* East Kara Sea 121 & 21* West Bering Sea *Treshnikov basin divided for purposes of this study

- Analysis of 50-km buffers seaward and landward along each sea coast and also for entire tundra area below 330 m.
- 1982–2007 AVHRR data to analyze trends in sea ice concentration, LST, and NDVI.

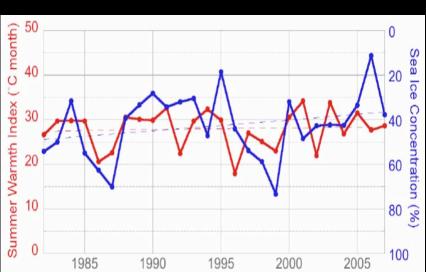
Polar stereographic projection (J. Comiso) Map by M. Raynolds, March 2008


- Mid July Sea Ice percentage cover
- Summer warmth index (SWI)
- Max NDVI
- Integrated NDVI

Bhatt et al: Yamal LCLUC Workshop, Moscow, 28-30 Jan 2008, and EGU 2008.

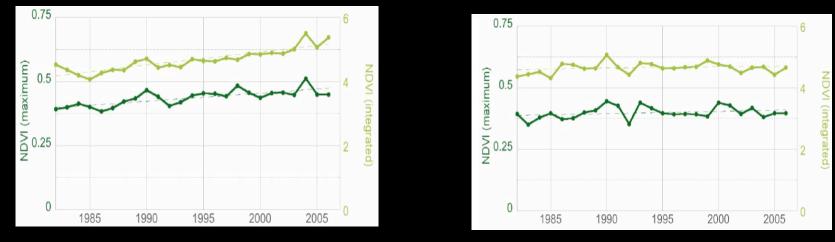
Sea-íce and temperature trends ín Beaufort Sea and Kara/Yamal region of Russía, 1982-2007

Beaufort


Negative sea-ice trend (-29%) correlated with positive temperature trend (+16%) and very high interannual variability.

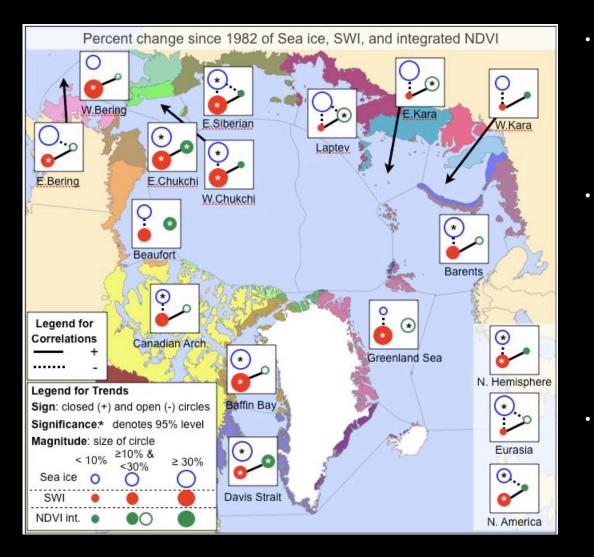
Kara/Yamal

Negative sea-ice trend (-25%) but nearly flat temperature trend (+4%).


None of the trends are significant at p = 0.05 because of high interannual variability.

NDVI trends in Beaufort Sea and Kara/Yamal region of Russia

Beaufort


Kara/Yamal

- Greater change in Beaufort Region maximum NDVI (+ 24%) vs. Kara/Yamal (+ 3%) most likely due to more positive trend in ground surface temperatures in the Beaufort region during the period of record.
- Beaufort trends are significant at p = 0.05.

Bhatt et al. EGU, Vienna, Proceedings, 2008.

Summary of trends

Bhatt et al., in progress, 2008.

- Sea ice is strongly decreasing throughout the Arctic except the Greenland Sea. The strongest most significant trends are in the E. Siberian to E. Chukchi region.
- Summer warmth is increasing most strongly in the Beringian region between the E. Siberian Sea and the E. Chukchi and also in the Greenland Sea and Baffin Bay. Relatively small increases are seen between the W. Kara and Laptev seas.
- NDVI is increasing most strongly in the E. Chukchi and Beaufort regions, and also Davis Straight. Negative trends are occurring in several areas, most notable along the E. Kara Sea and Laptev Sea.

Correlations between trends

Region	Week of 50% ice conc.	Correlation, sea ice & SWI	Correlation, SWI & integrated NDVI	Correlation, sea ice & integrated NDVI		
N. Hemisphere	23-29 July	-0.42	0.45	-0.25		
N. America	30 July - 5 August	-0.27	0.41	-0.40		
Eurasia	16-22 July	-0.42	0.58	-0.46		
Beaufort	7-15 July	-0.41	0.37	-0.25		
W. Kara	16-22 July	-0.39	0.57	-0.29		

Blue: Negative correlations. Red: Positive correlations. Bold: Significant at p = 0.05. *Italics:* Significant at p = 0.10.

- Year to year variation in summer land surface temperature (SWI) is generally strongly negatively correlated with mid-July ice cover within 50-km of the coast.
- Correlations weaken at greater distances from the ocean (not shown).
- Integrated NDVI is positively correlated with trend in summer land temperatures and negatively correlated with the trend in sea-ice.

Correlations with climate indices

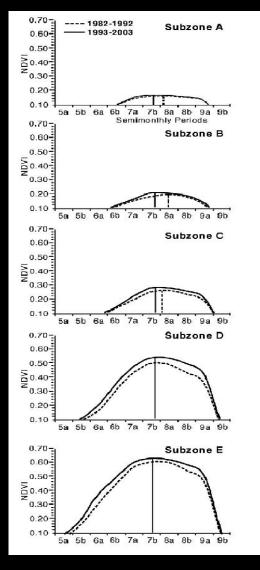
50-km zones with climate indices during preceding winter (DJFM)

Red values are positive correlations, blue are negative. Bold values are significant at 90% level or greater.

	SWI				Sea Ice				Integrated NDVI			
Climate index	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI
Barents	.38	.3	0	.14	-0.2	3	.42	20	.11	.20	24	.23
Kara-Yamal	.27	.12	0	.14	54	57	.48	34	0	.14	29	.40
Kara-East	2	40	14	2	0	0	0	0	0	13	0	.16
Laptev	.33	.19	31	.15	56	53	.43	17	0.60	.41	41	.27
E.Siberian	.14	.33	43	.32	27	56	.49	26	0.19	.45	63	.49
Chukchi	1	.12	28	.37	.19	26	.20	11	17	0	26	.25
W. Bering	0	0	26	.13	11	24	.14	0	0	0	22	0
E. Bering	0	0	11	.22	0	25	.10	0	0	0	0	.15
Beaufort	.48	.40	0	.11	0	0	27	.16	12	.10	25	.22
Canadian Arch	.19	.13	0	0	.14	0	0	0	0	.14	16	.15
Davis Straits	2	0	0	.15	.18	0	0	11	31	0	0	.10
Baffin Sea	0	0	15	.16	0	0	.15	17	0	0	0	.24
Grnland Sea	1	.14	10	.19	.43	.26	0	0	.13	0	0	0

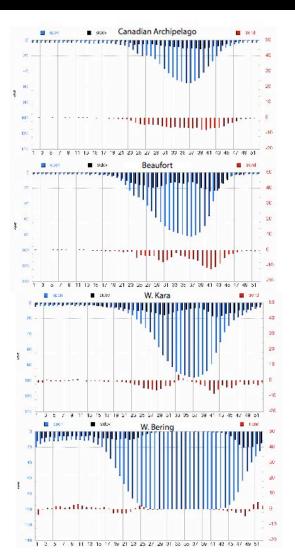
Correlations with climate indices

50-km zones with climate indices during preceding winter (DJFM) Red values are positive correlations, blue are negative. Bold values are significant at 90% level or greater.


	SWI					Sea Ice				Integrated NDVI				
Climate index	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI	NAO	AO	PDO	NPI		
Barents	.38	.3	0	.14	-0.2	3	.42	20	.11	.20	24	.23		
Kara-Yamal	.27	.12	0	.14	54	57	.48	34	0	.14	29	.40		
Kara-East	2	40	14	2	0	0	0	0	0	13	0	.16		
Laptev	.33	.19	31	.15	56	53	.43	17	0.60	.41	41	.27		
E.Siberian	.14	.33	43	.32	27	56	.49	26	0.19	.45	63	.49		
Chukchi	1	.12	28	.37	.19	26	.20	11	17	0	26	.25		
W. Bering	0	0	26	.13	11	24	.14	0	0	0	22	0		
E. Bering	0	0	11	.22	0	25	.10	0	0	0	0	.15		
Beaufort	.48	.40	0	.11	0	0	27	.16	12	.10	25	.22		
Canadian Arch	.19	.13	0	0	.14	0	0	0	0	.14	16	.15		
Davis Straits	2	0	0	.15	.18	0	0	11	31	0	0	.10		
Baffin Sea	0	0	15	.16	0	0	.15	17	0	0	0	.24		
Grnland Sea	1	.14	10	.19	.43	.26	0	0	.13	0	0	0		

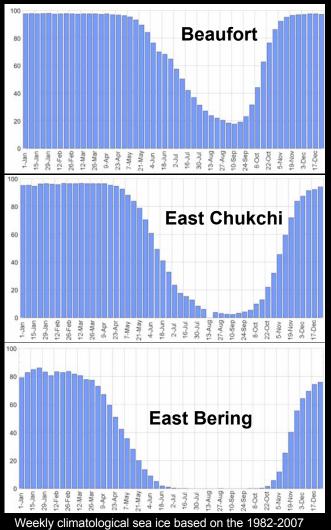
• Sea ice is generally negatively correlated with the Arctic Oscillation and positively correlated with the Pacific Decadal Oscillation.

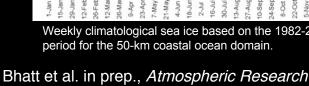
• SWI and NDVI are generally positively correlated with the AO and negatively correlated with the PDO.

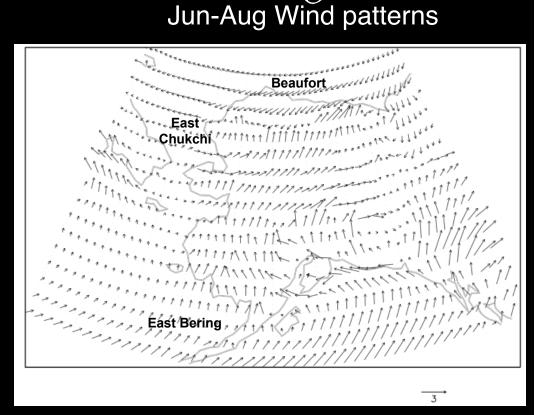

 Correlations require more thought in terms of mechanisms. Analysis of wind correlations with NDVI and SWI are in progress.

Seasonality trends Sea-ice concentration

NDV


Jia et al. in press, JGR-Biogeosciences




Bhatt et al. in prep., Earth Interactions

Controls on seasonality

Biweekly sea-ice concentration in Arctic Alaska Seas

NARR long term climatological 10-m vector winds (1979-2000) averaged for June-August in m s-1. Data for image provided by the NOAA-ESRL Physical Sciences Division, Boulder Colorado from their Web site at http://www.cdc.noaa.gov.

Future analyses will examine the controls of sea-ice, winds, snow, atmospheric circulation and ocean circulation on seasonal patterns of NDVI. Proposed to NSF by Epstein, Bhatt, Walker, and Steele.

Some problems with existing arctic biomass data in the literature

- Although trends in NDVI are clear, there are still no convincing groundbased studies of changes in Arctic plant biomass.
- Real vegetation type is often unknown.
- Soil and site factor information missing.
- Harvest methods not documented.
- Not georeferenced.
- Replication not documented.
- Not linked to NDVI, LAI, or other cover properties of the vegetation.
- Definitions of biomass components unclear.

"What is above-ground biomass?"

"What does NDVI really mean in tundra systems... particularly for reindeer and caribou?"

Some areas with low NDVI have high forage quality for reindeer.

Bright green areas may be dominated by species such as alder or dwarfbirch, which have abundant toxic secondary plant compounds that protect them from grazing.

Lichen-woodland at Nadym

Shrub tundra at Laborovaya

Cumulative effects on the Yamal

Resource development:

- Indirect (unplanned) impacts (such as ORV trails, flooding from roads) are greater than the direct (planned) impacts (infrastructure).
- Roads and pipelines: serious barriers to migration corridors.
- Effects will increase as new field are developed.

Landscape factors and terrain sensitivity:

• High potential for extensive landscape effects due to unstable sandy soils, and extremely ice-rich permafrost near the surface.

Reindeer herding:

- Land withdrawals by industry, increasing Nenets population, and larger reindeer herds are all increasing pressure on the rangelands.
- Herders view: Threats from industrial development much greater than threats from climate change.
- They generally view the gas development positively because of increased economic opportunities.

Climate change:

- Satellite data suggest that there has been only modest summer land-surface warming and only slight greening changes across the Yamal during the past 24 years. (Trend is much stronger in other parts of the Arctic, e.g. Beaufort Sea.)
- Kara-Yamal: negative sea ice, positive summer warmth and positive NDVI are correlated with positive phases of the North Atlantic Oscillation and Arctic Oscillation.

Circumpolar Summary

- **Temperature sea ice linkages:** Strong linkages have been demonstrated between reduced sea-ice concentrations and increased land-surface temperatures.
- **NDVI trends:** Large regional differences in the NDVI trends:
 - Strongly positive trend in the northern Beringia region of E. Siberia, Chukchi, and Beaufort seas. This is the region with the strongest recent reductions in sea-ice concentrations.
 - Slight negative trend in northern Eurasia (E. Kara, Laptev seas).
- NDVI controls: Ground-based and remote-sensing studies along climate transects in North America and Yamal have very different spatial patterns of NDVI and factors affecting the NDVI in each region:
 - North America: age of glacial surfaces, differences in substrates (acidic vs. nonacidic soils), strong temperature controls.
 - **Yamal**: Large effect of natural disturbance, sandy vs. clayey substrates, heavily grazed systems (but still unknown what the actual effect of reindeer on NDVI is), weaker temperature control.
- **Climate drivers:** Throughout the Arctic including the Beaufort and Yamal, the general trend is positive summer warmth and NDVI with positive phases of the North Atlantic Oscillation and Arctic Oscillation, and negative correlations with positive phases of the Pacific Decadal Oscillation. The positive phase of NAO and AO is consistent with a warmer winter Arctic, reduced summer sea ice (-), increased SWI (+) and increased integrated NDVI (+).
- Replicated long-term studies: Needed across the Arctic and coordinated with other terrestrial monitoring of climate, permafrost, active layers, ITEX etc. — especially in areas currently surrounded by perennial sea ice and other areas where the changes are occurring most rapidly (e.g. Beringia region).
- Standardized protocols: Need standardized protocols for biomass and vegetation monitoring at a network of sites for a coordinated Circumpolar Terrestrial Ecosystem Baseline.