Spatial and temporal variability of
active-layer thickness under
changing climatic conditions in
Northwest Siberia
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Mean Annual Air Temperature Difference (1960s-1990s)
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Circumpolar Active Layer Monitoring Program
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Circumpolar Active Layer Monitoring

Welcome to the web site for the Circumpolar Active Layer Monitoring Network-CALM IT (2004-2008): Long-Term
Observations af the Climate-Active Layer-Permafrost System.

The primary goal of the Circumpolar Active Layer Monitoring (CALM) program is to observe the response of the active layer
and near-surface permafrost to climate change over long (multi-decadal) time scales. The CALM observational network,
established in the 1990s, observes the long-term response of the active layer and near-surface permafrost to changes and
variations in climate at more than 125 sites in both hemispheres. CALM currently has participants from 15 countries.
Approximately 60 sites measure active-layer thickness on grids ranging from 1 ha to 1 km?, and 100 sites observe soil
temperatures, including permafrost temperatures from boreholes. Most sites in the CALM network are located in Arctic and
Subarctic lowlands, although 20 boreholes affiliated with CALM are in mountainous regions of the Northern Hemisphere above
1300 m elevation. A new Antarctic component is being organized and currently includes 13 sites. The broader impacts of this
project are derived from the hypothesis that widespread, systematic changes in the thickness of the active layer could have
profound effects on the flux of greenhouse gases, on the human infrastructure in cold regions, and on landscape processes. It is
therefore critical that observational and analytical procedures continue over decadal periods to assess trends and detect
cumulative, long-term changes.

The CALM program began in 1991. It was initially affiliated with the International Tundra Experiment and was later (1998-2002)
supported by a grant from the U.S. National Science Foundation’s Arctic System Science program to the University of Cincinnati
and directed by Professor K. M. Hinkel During a bridging year (2003) field operations in Alaska, Russia, Mongolia, and
Kazakhstan were supported by the University of Delaware’s Center for International Studies. The CALM program is currently
supported by a grant from NSF’s Arctic Research Support and Logistics program (OPP-0352958).* A brief history of CALM 1s
available in the paper by Brown et al. (2000).

This web site contains archived data sets, a table of summary statistics, a map of the sites, measurement protocols, CALM forms,
equipment installation instructions, uploading and downloading instructions, and other pertinent information.

*Any opinions, findings, conclusions, or recommendations expressed in on this site or in CALM publications are those of the
authors and do not necessarily reflect the views of the NSF. Mention of specific products or manufacturers does not constitute

endorsement by NSF.
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www.udel.edu/Geography/calm
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Regional trends in ALT (1995-2008)
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Air temperature anomalies in Northwest Siberia
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season Beliy @ Marre-Sale Nadym

winter 6.3 3.2 6.3
summer 4.4 4.8 4.6
annual 6.7 4.7 6.6
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Data provided by N. Moscalenko and A. Vasilev



ALT trends in Nadym (R1)

ALT anomalies (cm)
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Estimates of “average” geocryological parameters (permafrost extent, thickness, annual
ALT, Annual soil/permafrost temperature) which are in equilibrium with climate

conditions.

Model based on earlier works by Kudryavtsev et al., 1974; Ansimov and Nelson (1997); Shiklomanov and Nelson,
1999; Anisimov et al, 2002; Sazonova and Romanovsky, 2003 with parameterization from Construction Norms and
Regulartions (1990), Feldman (1988)



Model validation at Marre-Salle grid (R3), Central Yamal
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Marre-Salle Grid
(ALT for 1995-2008)
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Uncertainties in air temp and regional trends
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Arctic: 45-90°N, Area: 39.375 million km?2
West Siberia: 63-74°N and 63-87°E. Area: 0.969 million km?.
North Slope of Alaska: 67 - 71°N and 140 - 167°W. Area: 0.368 million km?2

CRU: UK Climate Research Unit Dataset

W&M: Willmott and Matsuura Dataset

ERA40: European Center for Medium-Range Weather Forecast 40-year Re-Analysis

NCEP: National Center for Environmental Prediction — National Center for Atmospheric Research



Seasonal trends in air temp in Northwest Siberia
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Modeling near-surface-permafrost parameters in Northwest Siberia
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Active Layer map of Northwest Siberia*
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Comparison of modeled ALT vs. “Active Layer map of Northwest Siberia”

“Warmest” climatic data set (a) “Coldest” climatic data set (b)

b

" | underestimated overestimated

Comparison is based on climatic averages calculated for 1962-1989 period:
a.Model input from W&M data set (19% higher, 16% lower)
b.Model input from ERA40 data set (23% higher, 11% lower)



Mean annual air temperature

MAAT (1990-2008)
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Mean annual air temperature change*
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Temperature of the Permafrost Top (TTOP)
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Change in bearing capacity A
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Maps of ground subsidence probability

510 cm

/ENmmTTT - CTWEEA - probability (%)

-0 5 101520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

S = 0ALT * |, where

S : subsidence (cm),
O ALT: active-layer thickness change (cm)
I: volumetric ice content



Conclusions

Landscapes with well-developed organic horizons show
substantially lower dependence on climate compared to those with
less developed vegetation and peat layers.

Increases in vegetation cover and, especially, peat thickness in taiga
relative to the tundra zone requires higher values of DDT to reach
the same maximum thawing in northern taiga than in tundra.

Climate warming in Northwest Siberia is mostly attributed to winter
and spring seasons with less to the summer. Fall season
temperatures shows no — to negative trend.

Increase in air temperature lead to increase of TTOP by 0.3-1 C
compare to reference climatology of 1960-90s with a
corresponding increase in ALT from 2 to 15 cm. The highest
increase in ALT (up to 25% from the reference climatology)
corresponds with areas with the highest increase in continentality
of climate.



