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POPULATION GROWTH RATES AND AGE VERSUS
STAGE-DISTRIBUTION MODELS FOR TEASEL
(DIPSACUS SYLVESTRIS HUDS.)!
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AND
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Abstract. Mathematical models are developed to examine the population-level response of an
herbaceous plant species (teasel, Dipsacus svlvestris Huds.) which was experimentally introduced into
several habitats and monitored for 5 yr. Models based on morphological stages (size) rather than
chronological age give more satisfactory results. Population growth rates (A,,) range from 0.63 to 2.60.
which are likely typical for fugitive plants. Values are interpreted as responses to both external and
internal factors. Grass litter. and the presence of other dicotyledonous species. and the overall primary
productivity of the rest of the community are important factors determining the success or failure of an
attempted colonization by teasel. Individual plant and population-level growth rates seem to be deter-

mined independently.

Key words: Age-distribution; biennial; colonization; Dipsacus: fugitive species; mathematical
models; Michigan: morphological stages; old-fields; plant populations; population dvnamics: popula-

tion growth rates; population projection matrix.

INTRODUCTION

To a large extent. ecological studies of single plant
species or its populations have been concerned with
elucidating evolutionary radiation within a group, the
plasticity of responses to the environment. or selection
and fitness for particular sites. Recently there has been
a great interest in basic population dynamics. includ-
ing estimates of growth rates, age-specific (or size-
specific) mortality rates, birth rates, and the factors
influencing these. (See reviews by Willson 1972,
Harper and White 1974 and references in Werner
1976.) Studies of this type are a foundation for the
development of general theory in population biology.

Populations respond to both their outer environment
and their own internal state. Their response is complex
and multivariate, including changes in birth, death,
immigration and emigration rates, growth rates at both
the individual and the population level, and ultimately
genetic and evolutionary changcs. In this paper we use
mathematical models to examine the population-level
response of a plant (teasel. Dipsacus svlvestris Huds.).
Our effort differs from other studies of plant popula-
tion dynamics (e.g., Hartshorn 1972, 1975, but see
Sarukhan and Gadgil 1974) in examining several popu-
lations of a single species under different environmen-
tal conditions. Our estimates of population parameters
(e.g., growth rate. transient response, reproductive
value) can thus be interpreted as responses to both
external and internal factors. In a related paper (Cas-

! Manuscript received 5 October 1976; accepted 21 March
1977.

well and Werner 1977). we examine the effects of
hypothetical changes in the life history of teasel. by
modifying the internal structure of the models.

THE PoPULATIONS

Teasel (Dipsacus svlvestris Huds.) is a strictly
semelparous plant with no vegetative propagation.
Seeds germinate mainly in the spring. producing a
large-leaved rosette which requires vernalization be-
fore forming a single tall (0.5-2.5 m) flowering stalk in
some subsequent summer. Although commonly clas-
sified a biennial, the length of the rosette phase is
variable, and may last >5 years (Werner 1975a).

In eastern North America. teasel usually is found in
the later stages of old-field succession (before shrubs),
in meadows, and in ruderal habitats where periods be-
tween disturbances are >1 yr. Populations are
sparsely distributed regionally. but, where found. may
dominate the vegetation in terms of biomass. The re-
gional rarity of populations may be due partly to the
dispersal pattern of seeds (achenes): >99% of them fall
passively to the ground within a 1.5-m radius of the par-
ent plant (Werner 1975bh). Teasel is native to Europe.
where its populations are also restricted to disturbed
habitats, and are regionally rare but locally very dense:
the few (insect) herbivores that feed on teasel are
found in both N. America and Europe. It seems un-
likely that the selective pressures operating on teasel
now are vastly different from those under which it has
been evolving for a long time.

Research on the population dynamics of teasel was
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TaBLE 1. Vegetation characteristics of the study fields. See Werner 1975¢ for species composition and abundances

Relative levels of abundance of:

Mean? annual net
primary pro-

Field Grass Litter Herbaceous dicots Woody dicots’ duction (g/m?)
A Medium Low Low Negligible 343
B Medium Low Low-Medium Neglible 250
C Medium Low Low High 279
D Low Low High Negligible 233
J Low Negligible High High 287
K High High Negligible None 312
L Medium Low Low Negligible 377
M Medium Low Low Negligible 245

' Woody dicots create an overhead shading canopy.

2 ANPP of total vegetation in control plots within the fields in year 2. Method for determining ANPP is described

in Werner 1977.

initiated in 1969 in Kalamazoo County, Michigan,
USA. within a set of contiguous, small fields (each
25 x 25 m) which were set aside for succession studies
in 1964 and monitored annually. Eight fields were
used: all were 2-yr fallow (Fields J, K, L, M) or 3-yr
fallow (Fields A, B, C, D), although they differed
greatly in vegetative structure (Table 1). Within each
of the 8 fields, 26 plots 0.5 X 0.5 m in size were per-
manently marked and handsown with teasel seed at
the rate of 150 seeds per plot in the winter of 1968-69.
Subsamples of the seed lot prior to counting and sow-
ing showed a 99% viability. Upon germination, indi-
vidual seedlings were marked and their fates moni-
tored for five growing seasons. Some plots were
sacrificed each year to obtain estimates of primary
production (cf. Werner 1977).

It is important to note that teasel was absent from
the study area from 1964 until 1972, except where it
was deliberately introduced for this study. The nearest
natural population was 11.2 km from the study site. In
order to follow accurately the initially introduced seed
cohorts, any flowering heads that were produced prior
to the third year of the study were removed before
their seeds could be dispersed. By the third spring,
germination of seeds from the initial cohort was neglig-
ible and thereafter seed heads of flowering plants were
allowed to remain.

These teasel populations are artificial only in the
sense that they were purposely sown in the fields. In a
more important sense, they are natural; the introduc-
tions are simulated colonizations of habitats where
teasel happened to be absent but of a type which it
commonly colonizes. We note that the density of
seeds used (600/m?) is typical of the density of seed-
rain in a natural population. The fact that colonization
consisted of a specified number of seeds, sown into
marked pieces of ground in order to accurately assess
the fate of the various seed cohorts, is irrelevant to the
subsequent growth and behavior of the populations.

THE MODELS

Because production of seeds was counted, but not
allowed to feed back into the population, the repeated

counts in each quadrat provide a cohort record of both
survivorship and reproduction. With this information
we can construct parameters for a linear, time-
invariant, matrix model of population dynamics, a so-
called Leslie matrix or population-projection matrix.
The form of the model is:

xt + 1) = Ax() (1)

where x(7) is a vector of state variables (age-classes or
physiological stage classes) and A is a square matrix
which determines the dynamics of the population. The
time unit, in our case, is | yr.

The linearity of this model implies that there are no
effects of density on population growth. Ultimately. of
course, this cannot be true. However. teasel popula-
tions are capable of surviving for long periods of time,
slowly increasing to much higher densities than those
encountered during the course of this experiment. It is
unlikely that density had any serious effects on the
population during the period in which the parameters
were being estimated. How long this state of affairs
would persist, were the population to continue to grow
under these dynamics, is another question (Caswell
and Werner 1977).

A is a constant matrix. implying that there are no
changes in the environmental conditions confronting
the population. We assume that successional and other
changes in the eight fields were slow relative to the
year-to-year dynamics of survival and reproduction,
at least over the course of this experiment. This as-
sumption is hard to test. but is probably justified (cf.
Werner 1972).

State variables

The state variables, x(r). cannot be chosen arbi-
trarily. They must fulfill some very distinct require-
ments (Caswell et al. 1972). Their role is to encapsu-
late the relevant history of the system so that the
current environmental stimulus, together with the cur-
rent state, uniquely determines the system’s response.
Aninadequate choice of the state variable fails to satisfy
this requirement. and the resulting system description
will be indeterminate. There will be more than one
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TABLE 2. State vectors

Age classification Stage classification

x(1) seeds x(1) seeds
x(2) dead or dormant x(2) dead or dormant
seeds. year |1 seeds, year 1
x(3) dead or dormant x(3) dead or dormant
seeds, year 2 seeds, year 2
x(4) rosettes, year | x(4) small rosettes
x(5) rosettes, year 2 (<2.5cm)
x(6) rosettes, year 3 x(5) medium rosettes
x(7) rosettes, year 4 (2.5-18.9 cm)
x(8) flowering plants x(6) large rosettes
(=19.0 cm)
x(7) flowering plants

response possible to a given stimulus, the particular
response occurring determined by the past history of
the system.

The simplest state variable for population dynamic
models is the number of individuals. Much ecological
theory is built on the qualitative properties of models
using this state variable, but except in special situa-
tions, it is not adequate for a detailed description of
population dynamics. Populations of the same total
size can behave very differently, depending on their
internal composition. The effect of age structure is the
most obvious example; a population of prereproduc-
tive individuals responds differently to a given envi-
ronment than a population of the same number of re-
productive or postreproductive individuals, yet all
have the same population size. Lotka (1924) showed
that in a constant environment, the age distribution
would eventually become stable at which point it
would legitimately be collapsed into a scalar measure
of population size. Leslie (1945) developed a discrete
technique to deal with the dynamics of the age distri-
bution itself when the conditions of the stable age dis-
tribution theorem are not met.

Growth plasticity, however, makes even the com-
plete age distribution an inadequate state variable for
many organisms, higher plants in particular. Individu-
als of the same age may respond in very different ways
to the same environment, depending on their history.
Morphological stages based on size may encapsulate
the history of a plant more accurately than a
chronological age classification.

Because we have information on both the age and
the size of the individual plants in this study, we have a
unique opportunity to compare 2 choices of state vari-
ables for the same populations. The first (Table 2) is an
age classification, consisting of seeds, dead or dor-
mant seeds (explained below) of 2 ages, rosettes aged
1, 2, 3, and 4 yr, and flowering plants. Our second
choice for a state variable is a vector of morphological
stages: seeds, dead or dormant seeds, small (<2.5cm),
medium (2.5-18.9 ¢cm) and large (=19.0 cm) rosettes,
and flowering plants. Neither model subdivides the
flowering plant category: all flowering plants are con-
sidered identical with regard to seed output, regardless

POPULATION MODELS OF DIPSACUS

1105

of size or age. In the fields, the number of seeds pro-
duced per flowering plant varied little with the age of
the plant, and varied (linearly) with the size of the
previous-year's rosette only across sizes within the
“‘large rosette’’ category.

The age vector has 8 elements, the stage vector only
7: thus the A matrices for the 2 models are of dimen-
sion 8 x 8 and 7 x 7, respectively. By comparing the
behavior of these 2 models, we hope to determine
which of these state variables most accurately de-
scribes the dynamics of the populations.

Parameter estimation

In the A matrix of Eq. (1), the (i, ) entry gives the
number of individuals of stage i produced in year
t + 1, per individual of stagej in year . Estimation of
these parameters requires a knowledge of the fate, in
the next year, of individual plants of each stage in the
current year. For the purposes of parameter estima-
tion, each of the 26 quadrats (each 0.25 m?) in a field
were considered replicate populations. The transition
probabilities in the A matrices are means taken over
these replicates. Table 3 shows the resulting matrices.
for the age and stage classifications, for each field.

Probabilities of seed germination were based on
germination measurements made every 3 days in each
field (Werner 1977). The ungerminated seeds remain-
ing out of the 150 sown in each quadrat were assigned
to the “*first-year dead or dormant seed™ pool. This
category contains dormant seeds capable of germinat-
ing the next year as well as a number of seeds whose
fate is unknown—dead or eaten. It was impossible to
separate dormant from dead seeds in the field. The
“‘second-year dead or dormant seeds’” category was
calculated similarly, based on seeds in the first pool
that failed to germinate their second year. Since
third-year germination was negligible, it was assumed
in the model that all seeds not germinating after their
second year of dormancy were in fact dead.

Seed germination of teasel occurs in the spring. The
figures for seed germination (the first 3 columns of A in
Table 3) give the proportion of seeds (or dormant
seeds) that both germinate and survive until fall. For
these columns, the difference between one and the
sum of a column gives the proportion of plants that die
between one autumn and the next, a year later.

The probabilities of transition from one age or size
class to another were obtained by following marked
individual plants in the plots from one year to the next
(Werner 1977). Seed production per flowering plant
was estimated from regressions of seed number on
head size (Werner 1975¢).

The averaging of transition probabilities over repli-
cate quadrats within a field smooths out small-scale
spatial variation and demographic stochasticity. In ad-
dition. some of the parameters (e.g., in the stage mod-
el) were estimated in more than | yr. Hence, the ele-
ments of the matrices in Table 3 are averages over
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TABLE 3. Matrices of transition probabilities (see Table 2 for state vectors)
Field Age Classification Stage Classification
XD x(2) x(3) x4 x5 x(6) x(7  xB) ) x2 x(3) x4 x5 x(6)  x(N
A x(l) 431. x(h 431.
xX(2) 748 ... x(2) 748 ... o
x(3) Lo 9660 x(3) Lo 966 L
x(4)y 079 .021  .010 x(4)  .008 013 .010 125 ...
x(5) 137 . x(5)  .070 .007 000 .125 .238 .
X(6) 396 L X(6)  .002 .008 .000 .038 .245 .167
X7 o o167 .. x(7) . ... 000 023 750
X(8) 003 234 583 250
B x(h ... 465. x(n ... 465.
X2y 760 L. x(2) 761 ...
x(3) o092 L x(3) cee 928 L
x(4)  .078 059 018 S x(4)  .009 .044 016 .000 ...
x(5) . 287 . x(5)  .066 016 001 .074 .269 L
x(6) oo 681 L x(6)  .004 000 .000 .000 462 367
x(7) L. ... 443 . x(7) S ... 0000 000 .592
x(8) 002 (136233 324
C X 1,132 x(h ... 1,132
X2y 756 ... x(2) 756 ...
x(3) oo 940 L x(3) oo 9400 L. S
x4y .024 033 .003 . x(4)y 011 .033 003 .000 ...
x(5) 172 S x(5)  .014 .000 .000 .338 .268 .
X(6) 706 L x(6) .000 .000 .000 .045 .513 0.167
x(7) . .o 000 L x(7) 000 .000  0.833
x(8) 000 053 800 .200
D (D 1,105 x(y ... 1.105
X2y 567 ... . x(2) 567 ... o
x(3) ... 916 ... x33) ... 916 ... ...
x(4) 066 .033 018 .. x(4) .031 .053 .018 .029 ...
x(5) o226 L x(5) .035 018 .000 .327 .394 ...
x(6) 739 L. x(6) .000 .000 .000 .059 .376 .000
x(7) L ... .S14 S x(7) 000 .000  .667
x(8) 000 016 208 278
J x(l) . 476 x(1) S 476
x(2) 423 ... x(2y 423 ..
x(3) ... 987 .. x(3) ... W7 .
x(4) .070 009 .006 S x(4)  .024 .009 .006 .007 ...
x(5) 038 L. x(5)  .044 000 .000 .050 IS8 ...
x(6) o287 L. x(6) .001 .000 .000 .002 .008 .000
x(7) S oo 0000 L x( ... 000 .000  .250
x(8) 001,000 000 1.000
K xh ... .000 x(h .. .000
x(2) 800 ... o x(2) 800 ...
x(3) ... 959 L. x3 ... 959 ... L
x(4) .008 .040 .001 ... x(4) .001 .034 .001 .000 ...
x(5) ... 067 .. x(5)  .007 .006 .000 .048 .275 ...
x(6) 400 ... x(6) .000 .000 .000 .000 .025 .000
x(7) o oo 0000 L x(7) .o ... 000 000 000
x(8) 000 .000 .000 1.00
L x() ... 503 x() ... 503
x(2) 430 ... x(2) 430 ... ..
x(3) oo 9700 L. x(3) ... 970 L. .
x(4)  .046 .024 005 x(4) .010 .021 .005 .000 ...
x(5) ... ... 152 o x(5)° .036 .003 .000 .190 .253 ...
x(6) 312 ... x(6) .000 .000 .000 .070 .105 .150
x(7) . ... 000 L. x(7) s ... 000 002 517
x(8) 0003 136 .000 1.000




Late Summer 1977 POPULATION MODELS OF DIPSACUS 1107
TasLE 3. (Continued)
Field Age Classification Stage Classification
M x(1) 635 x(h 635

x(2)y 634 ... x(2) 634 ...
x(3) o973 L. x(3) .94 L L
x(4) 128 024 013 x(4)  .013 .017 .01 .000 ...
x(5) c L .128 R x(5) 109 .004 002 077 212 L
x(6) . 396 L. x(6)  .006  .003 000 .038 281 .000
x(7) . .. .627 L x(7) o o .. 000 063 1.000
x(8) 029 259 (160 213

both small-scale spatial and short-term temporal vari-
ability, and are currently the best estimates we can
make for populations of teasel.

RESULTS AND DiscussioN
Population growth rates

The solution to Eq. | can be written
(1) = A'%(0).

When the matrix function A" is expanded in terms of
eigenvalues and eigenvectors (Frame 1964) the result-
ing expression for x(7) is a series

N
x(1) = 2 TN
f

where the ¢; are constants which express the initial
conditions. and the \; and v; are the eigenvalues (as-
sumed distinct) and right eigenvectors, respectively,
of A. The eigenvalues and eigenvectors are determined
by the equation

/T\_',' = }\,‘\—’,'.

As t grows large. the contribution to x(t) of any of the
\; of modulus <1 will decay toward zero. while that of
any \; of modulus >1 will increase geometrically.

If A has a maximal eigenvalue. \,,. which is larger
(in modulus) than all the other eigenvalues. the long-
term behavior of the population is given by

’llln x(1) = ('m\_'mxm’-

The population will ultimately grow geometrically at
the rate A, per year, with a structure (age or stage)
defined by v,,.

Sykes (1969) has summarized the conditions under
which the existence of such an eigenvalue can be
guaranteed when A is a Leslie matrix. In the case of
more general matrices, such as ours, much of this
theory does not apply. The Perron-Frobenius
Theorem. in its weak form applicable to reducible
nonnegative matrices (Gantmacher 1959:80), guaran-
tees the existence of a nonnegative eigenvalue of mod-
ulus greater than or equal to that of all the other eigen-
values. The only disturbing possibilities not ruled out
are a maximal eigenvalue of exactly zero or of exactly
the same modulus as one or more of the other eigen-
values. However, neither of these situations is struc-

turally stable in general, and they can be neglected
when the elements of the matrices are estimated from
real data. Thus we are justified in applying theory
based on the existence of a maximal eigenvalue. and,
in fact, all our matrices possess such an eigenvalue.

The biological interest in A,, arises partly from its
identification with evolutionary fitness by Wright
(1937) and Fisher (1930: Fisher actually used
r = In\,). They assigned values of A, to the different
genotypes within a population and demonstrated that
those genotypes with a higher A, would ultimately
dominate the population. Fisher's Fundamental
Theorem asserts that the value of A, for the population
(the average of the values for the different genotypes)
will continue to increase under the impact of selection,
at a rate proportional to the genetic variance in indi-
vidual fitness. In an unlimited. competition-free. opti-
mal environment, the per capita growth rate of a
genotype is known as r or r,. the ““intrinsic rate of
increase,”” and selection operating in such an envi-
ronment will result automatically in increasing the in-
trinsic rate of increase of the population. This result is
not incompatible with the notion of K-selection intro-
duced by MacArthur (1962, MacArthur and Wilson
1967) to describe population growth in a limited. com-
petitively full environment. In both environments,
selection operates to increase individual fitness. and
still results in an increase in population fitness, but it
may do so through parameters other than r,,.

Table 4 shows the population growth rates A,,. and
the instantaneous values r = In\,,, for each of the
eight populations, for both the age and stage models.

TaBLE 4. Eigenvalues (A,) and instantaneous growth rates
(r = In X\,) for the age and stage models

Age model Stage model

Field A r A r
A 1.263 0.233 1.797 0.586
B 1.462 0.380 1.989 0.688
C 1.401 0.337 1.875 0.629
D 1.350 . 0.300 2.071 0.728
J 0.333 —1.100 0.628 —0.465
K 0.0004 -7.752 0.275 —1.291
L 0.891 —0.115 1.195 0.178
M 1.679 0.518 2.605 0.957
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TaBLE 5. Stable age and size distribution for stage and age models
Fields
Model A B C D L M
AGE
x(1) seeds 46.87 S1.13 51.55 56.35 59.13
x(2) dead or dormant seeds. year 1 27.74 26.60 27.83 23.68 22.33
x(3) dead or dormant seeds. year 2 21.21 16.83 18.67 16.06 12.95
x(4) rosettes, year | 3.56 4.01 1.60 2.96 4.93
x(5) rosettes. year 2 0.38 0.79 0.20 0.49 0.37
x(6) rosettes, year 3 0.12 0.37 0.10 0.27 0.09
x(7) rosettes. year 4 0.02 0.11 0.00 0.10 0.03
x(8) flowering 0.14 0.16 0.06 0.07 0.16
STAGE (size)
x(1) seeds 58.48 61.15 61.14 68.76 58.21 71:45
x(2) dead or dormant seeds, year | 24.36 23.38 24.67 18.84 20.96 17.39
x(3) dead or dormant seeds. year 2 13.09 10.90 12.37 8.33 17.01 6.50
x(4) small rosettes 0.53 0.87 0.81 1.59 0.93 0.50
x(5) medium rosettes 2.79 2.59 0.69 1.96 2.45 3.30
x(6) large rosettes 0.50 0.88 0.23 0.40 0.31 0.56
x(7) flowering 0.24 0.26 0.10 0.13 0.14 0.29

Table 5 lists the corresponding stable distributions
(age or size, respectively).

A value of A, > 1 (corresponding to an r > 0) im-
plies that the population will grow geometrically. A
value less than one results in a population decline to
extinction. Using either state variable. the populations
in our eight fields exhibit a spectrum of growth rates
from rapid extinction (J. K) through borderline persis-
tence (L) to rapid population growth (A, B. C. D and
especially M).

Clearly. the Dipsacus populations cannot continue
growing at rates as high as A, = 2.6 forever. Either
their own density must ultimately limit population
growth, or the environment will change in such a way
as to eliminate them. Both factors are probably impor-
tant: density effects are considered in another paper
(Caswell and Werner 1977). The nonequlibrium values
of \,, underline teasel’s ecological position as a fugi-
tive species.

There are few other valid estimates of population
growth rates for natural plant populations. Hartshorn
(1972, 1975) used a size class matrix model to study
Pentaclethra macroloba and Stryphnodendron excel-
sum ., 2 rain forest tree species in Costa Rica. His val-
ues of A, for the 2 species are 1.002 and 1.047. respec-
tively. These are as expected for large organisms in
equilibrium with a very stable environment. Sarukhan
and Gadgil (1974) developed a model similar to ours to
describe population growth in 3 species of Ranun-
culus. They obtained values of A, from 0.743—1.801 for
Ranunculus repens. 0.095-4.665 for Ranunculus bul-
bosus. and 0.350-2.328 for Ranunculus acris. The
ranges reported are over 5-10 quadrats in a single
Welsh meadow. The occurrence of values <<l and
>>1, and the range of values found, are similar to
our results for teasel and are to be expected in species
living in nonequilibrium situations.

The stable age and size distribution (Table 5) are
similar among fields and between models. They have
been calculated before only by Hartshorn (1972, 1975)
and are presented here for their possible value in later
comparative studies. The stage model consistently pre-
dicts higher proportions of seeds and flowering plants in
the population, and a smaller proportion of rosette
plants. This is. no doubt, related to the higher popula-
tion growth rates exhibited by the stage model (see
below). Stable distributions are not presented for fields
J and K. or for L in the age model. because these
populations decline to extinction rather than grow with
a stable distribution.

The high proportion of the population in the dead or
dormant seed category is somewhat artificial. As men-
tioned earlier. there is no way of knowing what fraction
of these seeds are dormant and what fraction are dead.
The very low germination rates (Table 3) and the lack of
long-term dormancy mechanisms suggest that most are
dead. rather than dormant. Thus these components of
the stable vectors are artificially inflated by the inclu-
sion of a portion of the population that is no longer
extant.

Age vs. stage as state variables

We cannot directly compare observed and predicted
population trajectories using the 2 models. because re-
production was prevented by removing the seed heads
before the seeds could be dispersed. There are, how-
ever. several interesting indirect comparisons to be
made between the two state variables.

First. Werner (1975¢) showed that. when all 8 popu-
lations are lumped together. size is a better predictor
than age of plant fate from year to year. Our model
supports this on a field-by-field basis as shown in Table
6. Here we examine the accuracy with which the 2
models predict the first occurrence of flowering in each
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TABLE 6. Observed and predicted year of first flowering.
Numbers in parentheses give the number of flowering
plants predicted for that year

Predicted
Field Age model Stage model Observed
A 2(0.03) 2(0.42) 2
8 (1.03) 3(2.15)
B 2(0.02) 2(0.33) 3
8(2.41 3(2.81)
C 3 (0.03) 3 (0.93) 3
9 (1.33) 7 (6.69)
D 3 (0.03) 3(1.52) 4
9 (1.00)
J 2 (0.008)" 2(0.42)! 2
K never never never
L. 2 (0.003) 2(0.12) 2
=25 15 (1.03)
M 2 (0.56) 2(1.74) 2
S(1.53)

' Declines thereafter.

of the fields. Since the model deals in real numbers.
while fractional plants are impossible., we have shown
both the time when the model predicts the appearance
of the first flowering plants and the time when the
predicted number of flowering plants first exceeds I.
The stage model is clearly more accurate. In only 2
cases was its prediction more than 1 yr off. One of these
cases (field C) was so close (a prediction of 0.93 flower-
ing plants) to 1 at the correct year that flowering plants
would surcly be expected at this time. The other (field
L) is a marginally persistent population: A, for the age
model is 0.891, for the stage model 1.195. Both the age
and stage models predict a very long time to the first
flowering. which actually occurred in the 2nd year.
Over all 8 populations. the deviation between observed
and predicted first flowering is 1.62 = 1.64 (x = SE)
years for the stage model as opposed to 6.00 = 2.58 for
the age model.

Because of the plastic nature of growth in teasel
plants. it is not surprising to discover that the stage-
based models are superior to the age-based models in
predicting population behavior. As with most sessile
organisms. selective advantage has been conferred on
those individuals able to modify growth rates. to switch
from vegetative to reproductive modes. or to change
age of first reproduction in response to a changing envi-
ronment from which they cannot move. The large body
of theory and analytical techniques developed by ani-
mal demographers cannot be applied directly to studies
of plants with the possible notable exceptions of very
long-lived perennials where simetimes variation in
growth rates. age to first reproduction. etc., can be
smoothed over long time periods. or annuals where
growth and reproduction is canalized into a definite
time period. Even in the case of annuals. however.
stage-based models may also prove more useful than
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age-based models when analyses rightly include the
dynamics of seeds in the soil; for most annuals, the
length of the dormancy period of seeds is plastic to
some high degree and dependent upon environmental
conditions.

Although the stage distribution is clearly superior to
the age distribution as a state variable for teasel, this is
not the complete story. The values of A,, vary from field
to field in the same way in either model (Spearman rank
correlation coefficient r, = 0.93). and there is only |
case (field L) where the 2 models make contradictory
predictions about population persistence. However.
the maximum eigenvalues for the age model are in
every case smaller than those for the stage model. If the
age and stage classification were simply regroupings of
one another, our use of cohort survival data should
have resulted in identical values for A, (give or take
sampling error). This is so because when the population
reaches its stable distribution, at which time it is grow-
ing at the rate \,,, anv grouping of the states (including

Just summing all classes to obtain population size) will

grow at A,,. Thus any matrix generated by grouping
categories must have a maximum eigenvalue equal to
A,,. The fact that there is a consistent pattern in which
the eigenvalues of the age model are always less than
those of the stage model implies that the 2 ways of
classifying the population are not independent. The
age-transition dynamics are affected by the size distri-
bution. and vice versa. A complete population descrip-
tion would require at least an age X stage classification
as a state variable. Such state variables for populations
have been proposed on theoretical grounds (cf. Caswell
et al. 1972) and have been applied by Slobodkin (1953)
and Sinko and Steiffer (1969) to invertebrate animals.

This interaction between the 2 classifications is also
suggested in Table 1 of Werner (19754) where. for
example, the probability of death varies by as much as a
factor of 8 (from .02 to .17) between rosettes of the same
size but different ages. However. the interaction was
not detectable in that paper: statistical tests cannot be
used to examine age X size interaction since the data
are in the form of single numbers per block.

Further evidence for an age X stage interaction
comes from the variances of the elements of the A
matrices. Since each quadrat within a field was treated
as a replicate population, these variances measure the
degree of uncertainty in the prediction of the future
state from the value of the current state. Eliminating the
seed. dormant seed. and flowering plant categories
from consideration because they are the same for both
models. the average variances ( = SE) for the remain-
ing matrix elements are .068 + .009 for the age model
and .072 = .010 for the stage model. The values are not
significantly different. This means that the variation.
from one replicate population to another, in the descrip-
tion of transition dynamics. is about the same whether
the age or stage alone is used as a state variable.

One hypothesis is that this interaction involves an
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age-dependence of mortality for large rosettes. Large
rosettes older than 5 yr seem to experience a dramat-
ically increased mortality. This effect cannot be incor-
porated into the stage model, which is blind to the age of
a rosette. and it might account for the higher A, values
generated by the stage model. However, if this were
entirely the answer. one would expect that fields with
high survivorship in large rosettes should show the
largest discrepancy between A, (stage) and A, (age). In
fact, this is not the case (cf. Tables 3 and 4).

It would be of considerable interest to construct a
combined age X stage distribution model for Dipsacus .
The existence of the age X size interaction suggests
that such a model would be an improvement over either
the age or stage classifications alone. Unfortunately,
parameterizing the resultant I6-dimensional model
would require considerably more data than we have
available. Moreover. Werner's (1975¢) demonstration
of the superiority of size over age as a predictor of
rosette transitions. and the superiority of the stage
model over the age model in predicting the occurrence
of flowering suggest that the improvement over the
stage model might not be great. Because of the demon-
strated superiority of the stage model, and the theoreti-
cal reasons for preferring size to age as a stage variable
for organisms with plastic growth, we will carry out the
rest of our analyses on the stage model only.

Environmental effects on population growth

The biotic environments confronted by the Dipsacus
populations in the eight fields differ in many respects.
In Table 1 we have summarized some of these differ-
ences; we relate them here to the growth rate of the
populations. The direct action of the environment is on
the individual plant, which germinates, grows, lives,
and dies in relation to its surroundings. The results of
this action appear at successively higher levels of or-
ganization; the population (through birth rates, death
rates. growth and extinction), the community (domi-
nance by particular species or lifeforms, diversity, etc.)
the ecosystem (nutrient cycling, microclimate altera-
tion, etc.), and the biosphere (atmospheric homeo-
stasis. global element cycles and energy budgets, etc.).
The population growth rate, \,,, is a natural parameter
(although only one of several) for measuring environ-
mental impact at the population level, since it integrates
the effects of birth and death rates in a way intimately
related both to population dynamics (growth, extinc-
tion) and evolution (as the mean fitness of the popula-
tion).

The populations in fields J and K have growth rates
considerably less than one, indicating that these fields
are closed to continuance by Dipsacus . The reasons are
different for each field. Field K had a high level of grass
and grass litter (Agropvron repens L.). Werner (1975d)
has shown that Agropyron litter inhibits the germina-
tion of Dipsacus seeds in both the field and laboratory.
Examination of the matrices (Table 3) reveals that the
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TaBLE 7. Correlation coefficients (Spearman’s rank correla-
tion coefficient, r,) between community productivity (an-
nual net primary production in control plots: cf. Table
1). population growth rate (A,,) and individual plant growth
rate (mean diameter of rosettes in August; Werner 1977)

Community

A productivity
Individual growth rate 0.000! 476
P =10
o — -.79
P < .05

' A rarity in statistics: a correlation coefficient of exactly
zero.

population in Field K had the lowest germination prob-
ability (.199). and also the lowest survivorship of seed-
lings from spring until fall (.042) of any of the popula-
tions.

Field J had high levels of herbaceous dicots. which
compete strongly with Dipsacus (Werner 1977). and
was also heavily shaded by woody dicots (mainly Rhus
typhina L.). Germination probability was highest
(0.577) in this field. and Ist-year seedling survivorship
was not unusually low (0.120, rank Sth). However. the
heavy shading and dicot cover depressed the growth
rates of rosettes. resulting in high mortalities and very
low transition probabilities from one size class to the
next (the subdiagonal terms in the A matrix. Table 3).
The result is the same as that of the germination depres-
sion in field K: ultimate extinction of the population.

Beyond these 2 extreme cases, there is no obvious
relationship between the vegetation factors and A,,.
Teasel is able to colonize successfully a range of old-
field communities, being barred from invasion by the
combination of extreme shading and competition from
dicot herbs (e.g., Field J) or by litter effects on seeds
and seedlings (e.g.. Field K). See Werner (1977) for
further discussion of the effect of these factors on indi-
vidual plants.

Another possible measure of the competitive stress
faced by Dipsacus is the annual net primary production
of the community being invaded. Table 1 shows this
figure, which was measured in control quadrats for
each field (Werner 1977). The productivity in an envi-
ronment is inversely correlated with X\, for Dipsacus
(Spearman rank correlation r, = —0.79, P < .05).
Thus, there is strong indication that the growth rate of
Dipsacus populations is suppressed by the ““success’™
of the rest of the community.

Population growth vs. individual
plant growth

There are some interesting comparisons between
these results on population growth rate and the growth
rates of individual plants (Werner 1977). It is well
known, on mathematical grounds (Lewontin 1965), that
increases in individual growth rate can dramatically
increase population growth rate by shortening devel-
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opmental time. It is not necessarily true. however, that
individual and population growth rates in real popula-
tions always respond in the same way to the same
factors.

Table 7 shows the rank correlation coefficients be-
tween A,,. individual plant growth rates, and commu-
nity productivity. Community productivity and \,, are
negatively correlated. but community productivity and
individual growth rate are positively correlated. There
is a correlation of exactly zero between the individual
plant growth rates and population growth rates.

Over our sample of 8 environments, then. it appears
that individual and population level growth rates are
determined independently of one another. This does
not rule out the possibility of a distinct relation between
the 2. as seems to be the case in field J where low
individual growth rates due to competition with other
dicots are associated with a low value of A,,. It means
that such a relationship cannot be assumed as a general
rule.

Correlation analysis is clearly not going to unravel
the causal mechanism relating individual and popula-
tion growth rates. We have spoken earlier of the inte-
grative nature of such measures as \,,. The price for
such integration is the loss of detailed information on
internal mechanisms. The point remains, however, that
these analyses clearly demonstrate **emergent’” prop-
erties at the population level that are not predicted by
knowledge of the mechanisms operating at the indi-
vidual level.
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