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CHAPTER 11

Soil Carbon Distribution in Nonacidic and
Acidic Tundra of Arctic Alaska

J.G. Bockheim, D.A. Walker, and L.R. Everett

I. Introduction

Global climate models predict that greenhouse warming will be several times greater in the arctic
regions than the projected global mean of 1.5 to 4.5°C (IPCC, 1992). Indeed, during the past several
decades, climate warming has been greater in the arctic than in other regions. The warming has been
particularly large over Siberia, northwestern Canada, and much of Alaska, where warming rates over
the past 30 years have been approximately 1°C per decade (Oechel et al., 1993).

Most of the high-latitudes are underlain by permafrost, in which the summer thaw is limited to a
thin (often <50 cm) active layer. The soil active layer (0 to 35 cm) in the circumarctic contains up to
455 Gt C which is approximately 60% of the ~750 Gt C currently in the atmosphere as CO, (Post et
al., 1982; Billings, 1989; Oechel et al., 1993). However, the amount of carbon in arctic tundra soils
may be even greater than previously believed as recent data show that the upper 30 to 40 cm of
permafrost contains as much carbon as the active layer (Michaelson et al., 1996). If global warming
induces thawing of permafrost, this carbon could be released to the atmosphere as CO,, CH,, and other
trace gases, thereby amplifying the greenhouse effect. In fact, the warming of the 1970s and 1980s
over the Alaskan North Slope appears to have changed the tundra from a net sink to a net source for
the atmosphere (Oechel et al., 1993).

The only comprehensive survey of soil carbon stores in arctic Alaska was by Michaelson et al.
(1996). Soil carbon values (to 1 m) commonly ranged from 16 to 94 kg C/m? about one-half of which
was in the upper portion of the permafrost. Other soil carbon data are contained in reports of the
Alaskan coastal plain (Everett and Parkinson, 1977; Parkinson, 1978; Walker et al., 1980) and the
arctic foothills of Alaska (Walker et al., 1989; Walker and Barry, 1991).

A unique aspect of the physiography of arctic Alaska is a belt of calcareous loess between 5 and
70 km wide that extends across the arctic foothills and coastal plain provinces north of the Brooks
Range (Carter, 1988). The loess exerts a strong effect on the distribution of plant communities and
on soil development (Walker and Everett, 1991). Nonacidic landcover types may be more abundant
than previously thought on the North Slope, occupying 50% or more of the Kuparuk basin (Auerbach
et al., 1996). Nonacidic and acidic landcover types are readily distinguished by the normalized
differences in vegetation index (NDVTI) from SPOT multispectral digital data (Walker et al., 1995) and
false color AVHRR images of northern Alaska (Walker and Everett, 1991).

Mollisols have been observed on south-facing slopes of pingos (Walker et al., 1991), on high-
center polygons and rims of well developed low-center polygons (Everett and Parkinson, 1977;
Parkinson, 1978), and on loess-affected floodplains of the arctic coastal plain (Walker and Everett,
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1991). However, Mollisols may be even more abundant than previously believed in the Kuparuk
basin, also occurring in the northern Brooks Range and the arctic foothills.

The objectives of this study are (1) to determine the relative abundance of Mollisols and other
nonacidic soils in the Kuparuk basin, the location of the Arctic Research Consortium of the U.S. CO,
and methane flux study, (2) to compare key soil properties in moist nonacidic tundra and moist acidic
tundra, and (3) to elucidate the mechanisms accounting for differences in the depth-distribution of
carbon between these two landcover types.

I1. Methods and Materials
A. Sites

The study was conducted in the 9,200 km? Kuparuk watershed (Figure 1). Pedons were described and
sampled in three physiographic provinces, the Brooks Range (4 sites), the arctic foothills (33 sites),
and the coastal plain (18 sites) along a north-south gradient from ca. 70°17' to 68°30N. The area
occurs within the zone of continuous permafrost (Péwé, 1975).

The climate of the area varies with distance from the Arctic Ocean and elevation. The mean annual
temperature ranges from -12.8°C at Prudhoe Bay to -5.9°C in the Brooks Range (Haugen, 1982).
Temperature extremes are greater in the Brooks Range and arctic foothills provinces than in the
coastal plain. Precipitation declines from 300 to 450 mm/yr in the Brooks Range to 180 to 230 mm/yr
in the coastal plain.

The major landcover classes in the Kuparuk watershed (including percentage of area) are moist
nonacidic and dry tundra (38.9%), moist acidic tundra (30.8%), shrublands (16.8%), and wet tundra
(7.0%), with water and shadows (5.1%) and barrens (1.4%) occupying the remaining areas (Auerbach
etal.,, 1996). Moist nonacidic tundra contains predominantly non-tussock sedges (Carex bigelowii and
Eriophorum triste), a few prostrate shrubs (Dryas integrifolia, Salix reticulata, and S. arctica), and
brown mosses (Tomenthypnum nitens and Hylocomium splendens). In contrast, the moist acidic
tundra contains cottongrass tussocks (Eriophorum vaginatum), dwarf-birch (Betula nana), and other
acidophilous dwarf-shrub species, such as Ledum palustre spp. decumbens, Vaccinium vitis-idaea, V.
ulignosum, Salix planifolia spp. pulchra, and Sphagnum moss (Walker et al., 1994),

Residual surfaces and dissected uplands dominate the Brooks Range and arctic foothills. Glacial
deposits are limited to a region extending 65 km north of the Brook Range and vary from Holocene
to early Pleistocene from south to north (Kreig and Reger, 1982). The coastal plain contains primarily
drained or thaw lakes with isolated pingos of mid-Holocene age. Parent materials are dominantly loess
and silty colluvium in the foothills and lacustrine silts and organics in the coastal plain. Alluvium
occurs along the major river courses, including the Kuparuk, Toolik, and Sagavanirtok. Elevations
range from 1150 m in the southern foothills to sea level at Prudhoe Bay.

B. Sample Collection

There were two sets of sampling localities. Thirty-two pedons were examined during a close-support
helicopter reconnaissance to prepare landcover and soil maps of the watershed (designated as R95-1
through R95-32 on Figure 1). These pedons were located in major landcover types selected randomly
from aerial photographs and located using a global positioning system. The pedons were excavated
to the surface of the permafrost table in early August when the active layer was at its thickest. The
upper 10 cm of the permafrost was sampled using a hammer and cold chisel.

An additional set of 23 detailed pedons (designated as A95-1 through A95-23 on Figure 1) were
examined at 11 CO, and methane flux-tower measuring sites along a north-south gradient from Betty
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Figure 1. The Kuparuk drainage showing detailed and reconnaissance description and sampling sites
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Pingo near Prudhoe Bay to Imnavait Creek (Figure 1). These pits were dug by hand to the permafrost
table (average depth =51 cm) and additionally excavated to 1 m with a gasoline-powered Pico impact
drill. Detailed soil descriptions were taken at all sites, and bulk samples were collected from each
horizon and placed in water-tight bags. The soils were classified according to Soil Taxonony (Soil
Survey Staff, 1994) and the recently proposed Gelisol order (ICOMPAS, 1996).

Bulk density cores were taken from each horizon of the detailed pedons within the active layer.
Bulk density of reconnaissance pedons and permafrost horizons were estimated from the equation,
y = 1.374*¥10°9% where y = bulk density (g/cm*) and x = organic carbon (%). The equation was
derived from 82 measurements and had an r* of 0.823 (p = 0.0001). Soil pH was measured on a
saturated paste within 8 hours of sample collection using a portable pH meter.

C. Laboratory Analyses

The samples were returned to the University of Wisconsin where bulk density (reported on samples
dried at 105°C) and gravimetric and volumetric field moisture contents were determined. Air-dried
samples were ground to pass a 0.5-mm screen and subsamples were sent to the University of Alaska-
Fairbanks Agriculture and Forestry Experiment Station at Palmer for carbon analysis. Total carbon
and nitrogen were determined by dry combustion on a Leco C and N determinator (LECO Corp., St.
Joseph, MI). No adjustments were made for CaCOj so that the carbon values represent organic and
inorganic forms. The carbon and nitrogen contents of the profiles were determined to a depth of 1 m
by taking the product of carbon or nitrogen concentration, bulk density, and horizon thickness. The
percentage of coarse fragments was very low so that no corrections were necessary for skeletal
material. The carbon and nitrogen data are reported for the active layer, the upper part of the
permafrost, and to a depth of 1 m.

Comparisons in soil properties between nonacidic and acidic landcover types were done by one-
way analysis of variance.

II1. Results
A. Soil Classification

Nonacidic soils comprise 54% of the Kuparuk basin, including nonacidic Pergelic and Histic Pergelic
Cryaquepts (26.6%), Pergelic Cryoborolls (16.9%), and lesser amounts of Cryaquolls and nonacidic
Cryorthents (Table 1). These soils occupy primarily moist nonacidic tundra and, to a lesser extent,
shrublands, wet tundra, and barrens. Moist acidic tundra contains almost exclusively Pergelic and
Histic Pergelic Cryaquepts. Histosols comprise only 3.9% of the watershed.

In the recently proposed Gelisol order (ICOMPAS, 1996), about 38% of the soils in the Kuparuk
drainage are classified as Turbels, primarily Aquaturbels; 58% are Haplels, primarily Aquahaplels and
Histohaplels; and about 3.9% are Histels (Table 2).

B. Morphological and Chemical Soil Properties

Although data are shown for soils of all of the landcover types, the results for the moist nonacidic
tundra and moist acidic tundra will be emphasized. The active layer thickness was significantly greater
for the moist nonacidic tundra than for the moist acidic tundra (Table 3). The organic layer was
thicker for the moist acidic tundra than the moist nonacidic tundra, but the differences were not
significant. There was a highly significant (p = 0.0004) correlation between active layer thickness and
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Table 1. Distribution of soils in the Kuparuk drainage according to Soil Taxonomy (1994)
Soil taxonomy Landcover type % of Kuparuk®

Perglic, Histic Perglic Cryaquepts Moist acidic tundra 40.8
Perglic, Histic Perglic Cryaquepts, Moist nonacidic tundra, shrublands 26.6
nonacidic
Perglic Cryoborolls Barrens, moist nonacidic tundra 16.9
Perglic, Histic Perglic Cryaquolls Moist nonacidic tundra, wet tundra 8.1
Perglic Cryofibrists Wet tundra 2.7
Perglic Cryorthents, Shrublands 23
nonacidic
Perglic Cryochrepts Barrens 1.0
Perglic Cryohemists Wet tundra 0.6
Perglic Cryosaprists Wet tundra 0.6
Perglic Cryumbrepts Barrens 0.2

*Reported for land area only.

Table 2. Distribution of soils in the Kuparuk drainage according to the recently proposed Gelisol order

Soil taxonomy Landcover type % of Kuparuk®
Aquaturbels Moist nonacidic tundra, moist acidic tundra 254
Aquahaplels Moist nonacidic tundra, moist acidic tundra, shrublands 22.0
Histohaplels Moist nonacidic tundra, moist acidic tundra, shrublands, 20.4
wet tundra
Mollihaplels Barrens, moist nonacidic tundra, shrublands 9.5
Molliturbels Moist nonacidic tundra 82
Orthohaplels Barrens, moist nonacidic tundra 49
Fibristels Wet tundra 2.6
Haploturbels Barrens, moist nonacidic tundra 22
Umbrihaplels  Barrens 0.2
Histoturbels Moist nonacidic tundra 2.0
Hemistels Wet tundra 0.6
Sapristels Wet tundra 0.6

*Reported for land area only.

organic layer thickness for soils in the moist nonacidic tundra and moist acidic tundra. The A horizon
averaged 19 cm thick for moist nonacidic tundra soils; an A horizon was not present in soils of the
moist acidic tundra. The organic layers in the moist acidic tundra commonly overlaid a mottled,
dilatant-prone Bg horizon. There were no significant differences in thickness of the B horizon or the
solum between the two landcover types.

The pH values of the surface organic layer and the uppermost B horizon averaged 7.2 and 7.0,
respectively, for the moist nonacidic tundra soils and were significantly greater than the average values
of 4.5 and 5.3 for the moist acidic tundra soils (Table 3).

There were no significant differences in the amount of soil carbon in the upper 1 m between the
two landcover types; however, there were significantly greater amounts and proportion of carbon in
the active layer of soils in the moist nonacidic tundra than in soils of the moist acidic tundra (Table
3). Similarly, the amounts of nitrogen in the active layer and in the upper 1 m were significantly
greater in soils of the moist nonacidic tundra than in soils of the moist acidic tundra. Whereas the
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amount and proportion of field moisture in the active layer were significantly greater in moist
nonacidic tundra soils, the amounts of field moisture in the upper permafrost and in the entire profile
were significantly greater in moist acidic tundra soils.

There also were comparable differences in morphological and chemical properties in nonacidic
and acidic shrublands (Table 3); however, there were an insufficient number of sites to do meaningful
statistical comparisons.

IV. Discussion
A. Cryoturbation and Active Layer Dynamics

A greater proportion (60%) of soils in the moist nonacidic tundra were cryoturbated than in the moist
acidic tundra (40%). This is also reflected by a greater percentage of frost scars on the surface of the
moist nonacidic tundra. For example, at Sagwon, frost scars comprised 36% of the moist nonacidic
tundra (pedons A95-2 and A95-18) and <1% (pedon A95-3) of the moist acidic tundra. Cryoturbation
may be inhibited in the moist acidic tundra by the thicker organic mat. This mat also insulates the soil
and results in higher volumetric moisture contents and a thinner active layer. The organic mat, which
is often dominated by Sphagrnum, produces strongly acidic conditions (Sjors, 1963).

In contrast, cryoturbation causes mixing of the organic matter throughout the active layer and
exposes the dark-colored mineral soil, enabling greater thermal diffusivity in the moist nonacidic
tundra than in the moist acidic tundra. The incorporation of organic matter causes the development
of an A horizon, which often qualifies as mollic in most soils of the moist nonacidic tundra; an A
horizon is lacking in the moist acidic tundra soils. The amounts of carbon and nitrogen are
significantly greater in the active layer of the moist nonacidic tundra than in the moist acidic tundra
(Table 3). Whereas 60% of the carbon and nitrogen present in the upper 1 m exists in the active layer
of the moist nonacidic tundra, only 40% is in the active layer of the moist acidic tundra. A preliminary
model of the influence of cryoturbation on carbon dynamics and soil development in the moist tundra
of northern Alaska is given in Figure 2.

B. Origin of Alkalinity

According to Walker and Everett (1991), the distribution of moist nonacidic tundra closely parallels
the zone of calcareous loess deposition. The silt originates from limestone deposits of the Lisburne
Group in the Brooks Range and is transported by Sagavanirktok River and its tributaries to the coastal
plain. The calcareous silt is then transported as loess by strong, predominantly east-northeasterly
winds. Moist acidic tundra exists in areas receiving lesser amounts of snowfall and calcareous loess,
or on older surfaces where a Sphagnum layer has developed during plant succession (Walker et al.,
1989; 1995).

C. Implications

This study suggests that nonacidic soils may comprise 54% of the Kuparuk drainage, which is greater
than previous reports. The Kuparuk basin may represent a modern analogue of steppe tundra that
existed across Alaska and Siberia during Pleistocene glaciations (Hopkins, 1982; Guthrie, 1990;
Walker et al., 1991). Cryoturbation is an important soil-forming process that causes deep mixing of
carbon and results in dark-colored, organic-enriched mineral soils. Our estimates suggest that soils
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Cryoturbation
Mixes organic matter Exposes mineral soil,
in profile prevents buildup of
organic mat

Minimizes acidification;
enhances mineralization

Forms mollic Increases active layer
epipedon thickness .

Increases amount and proportion of
organic C, total N and field moisture
content in the active layer

Figure 2. Conceptual model of the influence of cryoturbation on carbon distribution and soil
development in moist nonacidic tundra in arctic Alaska.

of the Kuparuk basin may contain 435 Tg of carbon in the upper 1 m (Table 4) which is slightly
greater than the 381 Tg estimate of Michaelson et al. (1996).

We propose that in the event of global warming there will be a greater release of CO, from soils
of the moist nonacidic tundra than from soils of the moist acidic tundra because of the greater carbon
and field moisture contents in the active layer. Soils in the moist acidic tundra are protected by a thick
organic mat (average thickness = 16 cm) that will buffer against sudden changes in soil moisture and
temperature. However, the moist acidic tundra may be more susceptible to thermokarst because of
a greater proportion of ice wedges and other forms of massive ice than in moist nonacidic tundra.
Additional studies are needed to monitor CO, and CH, dynamics in moist acidic and moist nonacidic .
tundra.
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Table 4. Distribution of soil carbon to 1 m by landcover type in the Kuparuk basin

Area Soil C (kg m?)——

Landcover type % ha Active  Permafrost Total Soil C (Tg)
Barrens 14 129 11.5 0 11.5 1.5
Moist nonacidic 38.9 3579 31.0 243 55.4 198.3
Moist acidic 30.8 2834 18.3 30.4 48.7 138.0
Shrublands (nonacidic) 9.0 828 28.7 8.1 36.8 30.5
Shrublands (acidic) 7.8 718 19.8 13.3 33.1 23.8
Wet tundra (organic) 33.2 332 66.4

7.0 644 43.0
Wet tundra (mineral) 19.1 29.0 48.1
Water and shadows 5.1 469
Clouds and ice 0.1 9
Total 100.1 9210 435.1

V. Summary and Conclusions

Nonacidic soils comprise 54% of the Kuparuk basin primarily in association with moist nonacidic
tundra, shrublands along rivers, and wet tundra landcover types. Based on analysis of variance, the
following soil properties were significantly greater in soils of moist nonacidic tundra than in soils of
moist acidic tundra: active layer thickness, the thickness of the A horizon, pH of the surface organic
and the uppermost B horizon, and the amount and proportion of carbon, nitrogen, and field moisture
content in the active layer.

The depth-distribution of carbon in soils of arctic Alaska is controlled largely by the presence or
absence of an organic mat and its effect on the degree of cryoturbation (frost churning). Cryoturbation
in moist nonacidic tundra exposes the mineral soil, prevents the buildup of the thick organic mat that
is characteristic of moist acidic tundra, and slows down the rate of soil acidification. Cryoturbation
also mixes organic matter into the soil, contributes to the formation of a mollic epipedon, and results
in a deeper active layer in soils of the moist nonacidic tundra than in soils of moist acidic tundra.
Additional studies are needed to determine whether soils of moist nonacidic tundra and moist acidic
tundra will act as a source or a sink of CO, in a climate-warming scenario.
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