Satellite and land-based observations of environment, vegetation and NDVI along two Arctic Transects:

Partial results from the IPY Greening of the Arctic Project
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Abstract . . .
Detailed land-based observations of tundra environments, vegetation, and The NOrth Amenca and EuraS|a ArCtlc TranSECtS

spectral properties are needed across the full Arctic climate gradient to interpret . ] . .
recently detected circumpolar changes in tundra NDVI (Bhatt et al. 2010). The Bioclimate subzones Summer warmth index Maximum NDVI
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summarize the climate, soils, vegetation composition and structure, and spatial
and temporal patterns of NDVI along the North America Arctic Transect (NAAT)
and the Eurasia Arctic Transect (EAT). The transects have similar patterns of
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and temporal patterns of peak NDVI (MaxNDVI), but there is little difference in
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F u n d I n g . Figure 1. Bioclimate subzones for the circumpolar Arctic, the The North America Arctic Transect (NAAT) (Walker et al. 2008) Figure 2. Mean summer warmth index (SWI) is the average (1982-2010) sum of the mean monthly temperatures above 0 °C Figure 3. Maximum NDVI/biomass for the circumpolar Arctic, the NAAT and EAT derived from a data set first developed for the
G f h I PY G O A . I . . h S N . | S . and the Eurasia Arctic Transect (EAT) (Walker et al. 2011) based on the Circumpolar Arctic Vegetation Map derived from the AVHRR thermal bands (Raynolds et al. 2008). Circumpolar Arctic Vegetation Map (Raynolds et al. 2001) with biomass data from the NAAT and EAT transects (Walker et al.
rant Su pport or t e - prOJeCt and re ated prOJeCtS was prOVIded t e U atlona cience (Walker et al. 2005). The straight-line distance from the northernmost to southernmost locations on the transects is 1750 km 2011 in press).
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Despite the environmental and vegetation differences,

: : . . , the two transects have nearly identical relationships
Physical Environment Floristic Composition Vegetation Structure NDVI between AVHRR-MaxNDVI & biomass.

The two transects have important differences in precipitation, soil pH, floristic composition, vegetation structure, and AVHRR-MaxNDV!I.

* The spatial patterns of MaxNDVI (Fig. 5, Top) follow the
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t sh Walk t al. 2011 . tant disturb fact Sub- sensitivity to reindeer trampllng. Figure 6. 1-km AVHRR NDVI vs. aboveground biomass along the North America Arctic Transect (NAAT), the Eurasia Arctic
(no shown, Vvalker et al. ) are Important disturbance tactors zone A B C D E Transect (EAT) and the combined data set. (Modified from Raynolds et al. 2012).
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Table 1. Descriptions of zonal Arctic tundra study sites along the NAAT and EAT. Bioclimate © . y= 1?.456x +9.723 Bhatt U S et al., 2010, Circumpolar Arctic tundra vegetation change is linked to sea-ice decline, Earth Interactions, 14: 1-20.
subzones according to CAVM Team (2003). SWI is the sum of monthly mean air temperatures Table 2. Floristic-similarity matrix. Analysis of 202 relevés (133 from the NAAT and 69 from the EAT) and 556 0 R*=0.77251 — V. Kara (EAT) Epstein H E et al., 2011 in press, Dynamics ofaboveground.phytomass. of the Fircumpolar Arc.t'ic during the p.'?mst three cflecades, Environmental Research Letters.
above freezing. Air values (SWla) are at 2-m height derived from station data (varying lengths of species. Top value within each column (*) is the within-group similarity (mean similarity of all pairs of relevés 0.5 ° Sl 4] (S 5t ey AULIS, DD oeissine ) lRHSHiERss CUstletciniom (o T oo I (e, Giime s SEmsiug o Eavtoma et 108 20 2. _
e . T L . 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 1984 1988 1992 1996 2000 2004 2008 Raynolds M K et al., 2008, Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI, Remote Sensing of Environment, 112: 1884-1894.
record) and Walker et al. (2008a); surface values (SWis) are means (1982-2003) at top of the within the given transect and subzone). Other values are between-group similarities (mean similarity of all pairs : T e . e
i ] ) ) ) ) ] ) Summer Warmth Index (oc mo) ) Raynolds M K et al., 2012, A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI, Remote Sensing Letters, 3: 403-411.
plant canopy in 12.5-km pixels derived from AVHRR satellite data (Raynolds et al. 2008a). of relevés), with one of the pair coming from the column group and one from the row group. Red colored cells Figure 5. (Top) 1-km AVHRR NDVI vs. SWI along the NAAT and the EAT (Walker et al. Tucker C J and Sellers P J, 1986, Satellite remote sensing of primary production, International Journal of Remote Sensing, 7: 1395-1416.
Precipitation derived from Global Precipitation Climatology Centre (Beck et al. 2004) (Modified are between-transect similarities within subzones. Dark gray cells are within-transect similarities of subzone Figure 4. (Top) Total aboveground biomass by plant functional type for the NAAT and the EAT 2011, in press). Walker D A et al., 2005, The Circumpolar Arctic Vegetation Map, Journal of Vegetation Science, 16: 267-282.
from Walker et al. 2011 in press.) Soils data are from field surveys (Walker et al. 2011 et al, in relevé-groups of the NAAT, and light gray cells are within-transect similarities of subzone relevé groups of the locations. (Bottom) Total aboveground biomass vs. Summer Warmth Index along the NAAT and (Bottom) AVHRR-NDVI trends (1982-2010) for the Beaufort Sea (NAAT) and West Kara Walker D A et al., 2008, Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect, Journal of Geophysical Research — Biogeosciences, 113:
press.) EAT. All values are significant at p<0.01. (Walker et al. 2011, in press.) the EAT. Sea (EAT) regions (Bhatt et al. 2010, updated). G03S01
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