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Snow Regime

ABR worked with the National Park Service to produce accurate and detailed models of snow cover within the range of
the Western Arctic Caribou Herd, to provide important context to help understand movement patterns and timing of
caribou migrations. Snow depth influences caribou winter distribution and habitat availability by impacting the costs of
locomotion and cratering for forage plants and lichens. Snow depth patterns on the landscape also influence plant
communities, affecting the distribution of preferred forage species. Physical modeling techniques (e.g. Liston and
Hiemstra 2011) and remote sensing methods (e.g. Hall et al. 2001, Brodzik et al. 2007) have been used to provide
information on snow cover and snow depth data at daily to weekly timescales, and at spatial resolutions of 500-25,000
m. However, much of the variability in snow cover happens at much finer spatial scales, particularly for mountain and
tundra snowpacks (Sturm 1995). To help characterize winter and spring habitat conditions related to snow depth for the
Western Arctic Caribou Herd, we used a combination of image interpretation and statistical modeling to describe
patterns of snow persistence on the landscape at fine spatial resolution (30-m pixels). To accomplish this we compiled
and analyzed an extensive time series of over 10,000 Landsat images (1985-2011) that covered the caribou range.

Methods

A terrain shadow map was generated for each Landsat tile based on the solar azimuth and zenith from the scene
metadata, combined with a hillshade and illumination model using the ASTER G-DEM2 (a product of METI and NASA).
The Snowmap algorithm was applied to the cloud-free pixels for each tile (the dark reflectance tests were skipped for
modeled shadow pixels). The snow state and julian date were extracted for every cloud-free pixel in the time-series
stack and a binary classification tree selected the julian date that best separated the snow-covered from the snow-free
day of year. The results from the Landsat snow-free date algorithm were compared to long-term average snowmelt
dates from SNOTEL sites in the study area.
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Snow Regime Results
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Year January February March April May  June July  August September October November December Total
1984 I 1
1985 10 9 22 48 30 32 25 40 216
1986 3 16 69 30 35 35 52 25 2 307
1987 6 4 4 6 20
1988 3 6 9 11 29
1989 7 8 3 18
1990 2 3 6 | 12
1991 8 9 19 36
1992 49 57 32 2 140
1995 1 22 39 58 27 147
1999 14 40 87 81 89 34 345
2000 9 30 78 101 100 121 84 51 63 70 16 723
2001 108 109 108 123 70 70 73 72 39 772
2002 11 66 117 101 119 109 95 89 71 33 811
2003 2 121 98 73 47 69 45 20 473
2004 3 107 116 78 107 71 80 58 21 641
2005 5 70 91 84 157 141 102 91 69 810
2006 8 94 1067 121 143 144 127 105 13 864
2007 9 99 74 116 105 131 185 91 30 840
2008 9 71 63 151 163 153 168 123 27 028
2009 1 109 126 175 177 174 145 81 26 1014
2010 3 97 69 121 152 04 125 181 45 887
2011 7 119 124 218 175 113 78 43 877
Total 20 143 1193 1189 1492 1703 1568 1580 1239 624 160 2 10913
% of scenes:2000- 100% 100% 100%  99% 98% 90% 84%  82% 83% 69% 34% 0% 88%

2011

Vegetation Greenness Trends and Landscape Change

Shell Exploration and Production Alaska and ABR, Inc. are evaluating environmental issues associated with potential pipeline corridors for
transporting oil and gas from offshore prospects in the Chukchi Sea to the Trans-Alaska Pipeline System (TAPS). Broad scale vegetation and
habitat assessment work, including categorical habitat type mapping, is being conducted. Wildlife habitats are not static, however, and they
change over time in two primary ways that are important to understanding and characterizing wildlife use. The first habitat change dynamic is
seasonal changes, which are pronounced during the short growing season. The second important habitat change dynamic is landscape
change, which can be punctuated or gradual, occurring over a period of years to decades.

Several studies of coarse-resolution satellite images have observed widespread increases in vegetation greenness since the 1980s (e.g.,
Myneni et al. 1997). Ground studies and repeat photography have identified shrub expansion as one major mechanism of landscape
greening (e.g., Tape 2006), though graminoid expansion could be more important at colder sites (Elmendorf 2012). Gradual and abrupt
changes in vegetation affect wildlife use and will continue to affect wildlife habitats in the future.

Methods
_ _ We are characterizing landscape change at a relatively fine, 30-m resolution using data from both
| andsat Time-Series satellite imagery time-series and systematic field sampling of vegetation structure, composition, and

spectra. We assessed NDVI trends over the 1985-2011 time period for a 56,984 square kilometer
study area including the Arctic Coastal Plain and Brooks Range Foothills. Landsat scenes from peak
summer (July 15-August 21) for each available year were calibrated to surface reflectance, cleared of
shadows and clouds using a combination of automated algorithms and manual delineation, then
composited based on acquisition date, with scenes closest to August 1 preferred. Linear regression
was applied to calculate the slope of NDVI change for pixels with a significant (pp < 0.05) trend.

Data from two coarse-resolution AVHRR time-series covering the study area were analyzed to assess
the phenological timing of the Landsat scenes used for the fine-scale change analysis. In addition, the
NDVI trend was assessed using maximum value annual composites of each AVHRR time-series. The
new Global Inventory Modeling and Mapping Studies 3rd generation (GIMMS3g) covers 1981-2010
with circumarctic extent at 12.4 km resolution (Pinzon 2007). The USGS has produced a 1-km time-
series covering Alaska from 1990—present (http://ivm.cr.usgs.gov/index.php).

Phenology Results
AVHRR NDVI| Composites & Landsat Dates
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The July 15—August 21 window used for the Landsat composites mostly falls within the period of
peak phenology during each year. The occasional mid-summer dips in the USGS AVHRR are most
likely caused by cloud contamination.

Conclusions

The Landsat archive is a very valuable asset for characterizing seasonal habitat phenology and
landscape changes that affect wildlife habitats. The irregular acquisition schedule in the Alaskan
archive present challenges, but utilizing all scenes with useful information and performing
preprocessing including calibration, cloud-screenign and tiling allows the time-series products to be
used for many different applications.

The snow regime analysis results will be used to characterize winter habitat conditions for caribou
and can also be used to characterize subgrid heterogeneity for snow cover in climate models and
for monitoring with coarser spatial resolution satellite imagery.

The Landsat time-series landscape change analysis was successful at identifying both abrupt and
gradual transitions. Ongoing analysis of the in situ vegetation cover and structure data and field
spectra, supported by analysis of high-resolution (0.1-2.5 m pixels) photography and satellite
imagery will quantify the vegetation changes associated with observed spectral trends.
Understanding the spatial distribution and extent, and the mechanisms of landscape change in
northen Alaska will aid in sustainable development of resources and infrastructure.
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Linear regression using the Landsat time-series identified widespread significant spectral change: 19,516 square kilometers, or 31.4%
of the study area, experienced a significant increase in NDVI (p<0.05). 677 square kilometers (1.2% of the study area) experienced a
significant decrease in NDVI. Widespread decreases were seen only in areas that did not have Landsat imagery in the 1980s or early
1990s. Smaller areas with decreasing NDVI were sites of erosion or other disturbance.

NDVI increases covered virtually the entire study area based on the GIMMS3g data. The patterns of increase between the USGS
AVHRR NDVI and Landsat NDVI were very similar.

The finer spatial resolution of the Landsat analysis allowed us to target vegetation sampling in individual patches of vegetation
experiencing greening and improves our ability to explain mechanisms of landscape change. Line point intercept sampling of
vegetation cover and structure over 110-m diameter plots was conducted during summer 2012. Visible and near-infrared field spectra

Mechanisms of Landscape Change
Letters correspond to locations on Landsat NDVI trend map above. Cyan squares indicate ground plot and photo locations.
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(B)Vegetation greening along shrubby drainage and on degrading
ice-wedges.

(C)Vegetation establishment in strongly cryoturbated, patterned-




