lce-wedge degradation: Why Arctic wetland are becoming wetter and drier
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MEASURED & SIMULATED EFFECTS ON HYDROLOGY

ABSTRACT OBSERVED ICE -WEDGE DEGRADATION
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Disconnected Figure 6. A 25-yr photo time series of ground subsidence and trough-
Connected pond formation at Tapkaurak, North Slope, Alaska. Subsidence of
Figure 3. Observed recent ice-wedge degradation via aerial photos and satellite imagery from Alaska and Russia. The early (top panel) and late images (middle panel) ground above melting ice-wedges and the subsequent altered vegetation
represents the landscape prior and after the landscape-wide differential ground subsidence, i.e. trough-formation. The change in surface wetness (bottom panel) show wet- (between 1988-1991 and onwards) and development of inundated
ting (blue) and drying (yvellow). Also highlighted are the two hydrological stages related to surface water connectivity (disconnected and connected). All frames have 250 troughs (1998-onwards). The white arrow is added to aid orientation
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