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Introduction

Climate change has the potential to influence vegetation dynamics in high latitude ecosystems, which may affect the climate system through changes in water, energy, and carbon dynamics. To improve the capability to make
projections about the response of these land surface processes to climate change, we need to improve our understanding of how species composition influences these dynamics. Our research focuses on improving our
understanding of the role of species, or groupings of species (plant functional types) in the water, energy, and carbon exchange of ecosystems located at sites near Council on the Seward Peninsula.

Methods The Council sites represent a structural transition from tundra to forest, which is analogous to
n the Council sites, sampling grids (100 x 100m) (see pictures right) were centered on the eddy covariance towers, which trnsitionﬁsf arctic ecosystems that might oceur i response to climatic wain

measured energy, water and CO, fluxes. All vegetation sampling occurred at peak biomass, mid-July through mid-August
in 1999 and 2000.

= | eaf Area Index (LAI) measurements were taken every 10 meters within the grid (n=121) using a Licor 2000.

» The characterization of vegetation took place within these grids in randomly selected 20/50 cm quadrats stratified by

cover type. Aboveground vascular plant biomass was harvested to the top of the moss or lichen layer, which was

collected separately. Tall Befula and Salix were sampled in 1m? plots, with the 20/50cm quadrat subsampling the Barren Tundra Low Shrub Shrub Woodland Forest
understory.
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