F ALASKA

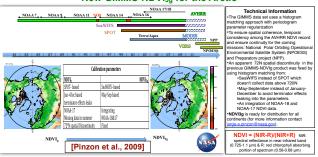
Seasonality of the air-sea-ice-land environment of Arctic tundra in Northern Eurasia and North America

GC31A-0701

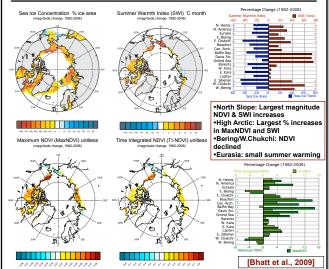
Uma Bhatt¹, Donald A. Walker², Martha K. Raynolds², Michael Steele³, Howard E. Epstein⁴, Gensuo Jia⁵, Josefino C. Comiso⁶ Jorge E Pinzon⁶, Compton J. Tucker⁶ 1 Geophysical Institute & Dept. Atmospheric Sciences at U. Alaska Fairbanks (UAF), 2 Institute of Arctic Biology at UAF, 3APL, U WA, 4Dept. of Env. Sci. at University of VA, 5CAS, Beijing China, 6NASA Goddard Space Flight Center 2009 AGU Fall Meeting, San Francisco, CA, Wednesday 16 December 2009

Main Results

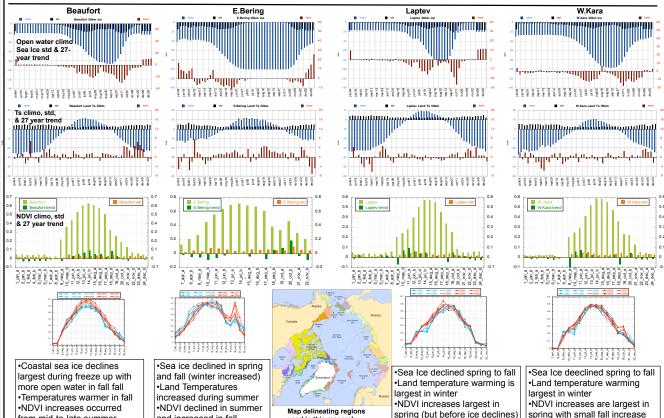
- · Sea ice declines are largest during spring and fall consistent with the periods of largest variability.
- · North America displays large year round warming while Eurasia displays largest warming in fall/winter.
- · Eurasia displays largest NDVI increases in spring and fall while N. America has largest increases in spring.


Motivation and Methods

Goal: Investigate the role of seasonality in current understanding of tundra-climate relationships


Data: Use 25 km resolution SSMI passive microwave Bootstrap Sea Ice Concentration (SIC), AVHRR Surface Temperature (T_s), and new GIMMS NDVI₃₀ for the Arctic over the 1982-2008 period.

Methods: Standard climate analysis techniques applied to regional time series constructed using data within 50-km of Arctic coastlines (ocean & land).


New GIMMS-NDVI_{3g} for the Arctic

Sea ice declines are driving vegetation increases

Weekly & Biweekly Trends in the Arctic Coastal Zone for the Beaufort, E. Bering, Laptev and W. Kara Seas

used in this research.

References

and increased in fall

Pinzon, J. E., E. Pak, C.J. Tucker, 2009 (submitted), A revised AVHRR 8-km NDVI Data Set -Compatibility with MODIS and SPOT Vegetation NDVI Data, American Geophysical Union EOS

from mid-to-late summer.

U.S. Bhatt, D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G.Jia, R. Gens, J.E. Pinzon, C.J. Tucker, C.E. Tweedie, and P.J. Webber, 2009 (submitted 12/2009): Circumpolar Arctic tundra vegetation change is linked to sea-ice decline, Earth Interactions

Acknowledgements

This study was supported by grants NSF ARC-0531180, NASA NNG6NE00A, NSF ANS-0732885, NSF ARC-0902175, NASA Land Cover Land Use Change on the Yamal Peninsula. This poster is a contribution to the NEESPI program.

Points Requiring Further Thought

- NDVI declined during first half of May throughout the Arctic: Is this due to some phenomena (late snowfall) that leads to delayed
- What is the cause of the secondary NDVI fall peak (e.g. E. Bering)?
- Why are NDVI increases larger in North America than Eurasia?
- · What role is played by the local atmospheric circulations in these results?