

Overview of talk

- Table of available data from the CAFF Strategy Report No. 5.
- Northern Alaska IAVD prototype

Appendix from CAFF Strategy Report No. 5

Canada relevés

Country	Source (author, date, location, journal)	Published Relevés	Other
Canada	Babb & Bliss 1974, QE Islands, J. Applied Ecology	8	
	Barrett 1972, Devon I., UBC PhD		72
	Bergeron 1988, Sverdrup Pass, Ellesmere I., U Toronto MSc		65
	Bliss 1977, Truelove Lowlands, Devon I, U Alberta Press	2	
	Bliss & Svoboda 1984, QE Islands, Holarctic Ecology	41	
	Bliss et al. 1994, Devon & Ellesmere I., Arctic & Alpine Research	19	
	Breen & Levesque 2006, Sverdrup Pass, Ellesmere I., Can J Botany	20	
	Brigland 1986, Cape Herschell, Ellesmere I., UNStJ MSc		70
	Cordes et al. 1984, Mackenzie Delta, report for BC Hydro		48
	Duclos et al. 2006, Bylot and Baffin I., Parks Canada		541
	Forbes 1993, mostly disturbed sites	246	
	Forbes 1994, mostly disturbed sites	180	
	Gill 1971, Mackenzie Delta, UBC PhD		64
	Gonzalez et al. 2000, CAVM Canada expedition AGC data report		108
	Gould, A.J., 1985, Lake Hazen, Ellesmere I., U Toronto MSc		50
	Hastings 1983, Mackenzie Delta, U. Alberta MSc		34
	Hernandez 1972, Tuktoyuktuk Peninsual, U. Alberta MSc		38
	Levesque 1997, Ellesmere I, U. Toronto PhD		41
	MacHutchon 2000, Vuntut Park, Parks Canada		89
	Nams & Freedman 1987, Alexandra Fiord, Ellesmere, Holarctic Ecology	8	
	Rowe et al. 1977, Rankin Inlet, Muskox	13	
	Smith et al. 1989, Herschel I., Ag. Canada		538
	Vonlanthen et al. 2008, Isachsen, Mould B., Green Cab., Phytocoenologia	75	
	Canada approx. total	612	1758

Alaska relevés

	Alaska approx. total	2274	299
	Webber, IBP studies at Barrow, summary table in Tieszen 1978		33
	Talbot & Talbot 1994, Attu Island	79	
	Talbot et al. 2010, Unalaska (Botany)	65	
	Talbot & Talbot 2008, Chisik I., (Daniëls Festschrift vol.)	38	
	Talbot et al. 2005, alders of SW AK, Phytocoenologia	128	
	S. Talbot:		
	Ebersole 1985, Oumalik, unpublished thesis		85
	Cooper 1986, Arrigetch Mtns, Phytocoenologia	372	
	Churchill 1955, Umiat, Ecology	51	
	AGC Subtotal	756	181
	Walker et al. 1997, Happy Valley Data report		55
	Elias et al. 1996, Barrow, Barter I. Legacy data report		61
	Edwards et al., 2000,, ATLAS data report		12
Alaska cont´d	Walker M.D., 1990, Pingos of N. Alaska, published thesis	293	
	Walker and Barry 1991, Toolik Lake data report, M.D. Walker et	72	
	Walker et al. 1984, Imnavait Crk. data report, M.D. Walker et al. 1994 (JVS),	81	
	Walker 1981, 1985, Prudhoe Bay, Ph.D. thesis and CRREL report	93	
	Schikhoff et al. 2001, N. AK, Willow comm., Phytocoenologia	85	
	Kade et al. 2005, North Slope Frost boils, Phytocoenologia	117	
	Jorgenson 2009, NPS, Arctic Network relevés	763	
	Edwards et al. 2002, North Slope	15	
	Breen 2012?, North Slope poplars, Phytocoenologia	25	
Alaska	Alaska Geobotany Center		

Greenland relevés

Greenland	De Molenaar 1974, MoG	61	
	De Molenaar 1976, MoG	305	
	Daniels 1982, MoGBiosci	269	
	Sieg et al 2006, Phytocoenologia	394	
	Sieg & Daniels 2005, Phytocoenologia	49	
	Lünterbusch & Daniels 2004, Phytocoenologia	49	
	Sieg et al 2009, Phytocoenologia	55	
	Drees & Daniels 2009, Phytocoenologia	149	
	Lepping & Daniels 2007, Polarforschung	57	
	Lünterbusch et al 1997, Polarforschung	50	
	Böcher 1963, MoG	450	
	Div MoG Danish researchers, MoG	200	
	Dierssen div.	50	
	Stumbock 1993, Diss. Bot	214	
	Lünterbusch Dissertation Münster		236
	Ferwerda, MSc Thesis Utrecht		150
	GBU-Berichte Copenhagen		150
	Herk and Knaapen, MSc Thesis, Utrecht		70
	Daniels 1992 Disko, still to be published		105
	Daniels NW Greenland 1993, still to be published		100
	Daniels 1998 NW Greenland, still to be published		100
	Daniels North Greenland 1995, still to be published		75
	Daniels West Greenland 2001-2003, still to be published		72
	Daniels SE Greenland 1995, still to be published		13
	Daniels 2009 S Greenland, still to be published		15
	Lepping 1998 NW Greenland, still to be published		60
	Dierssen & Dierssen W Greenland 1981, still to be published		500
	Greenland approx. total	2352	1646

Svalbard relevés

(Arve	Syntaxa are reviewed in Elvebakk (1994, JVS) without association tables.	
Elvebakk)	19 habitat types in 17 alliances, Several hundred relevés are in unpublished theses. eg. I. Möller 2000, NW Svalbard (479), Current total for Svalbard 479	

Russia relevés

	Russia approx. total	2381	2906
	LL Zanokha, unpublished from Taimyr, Labytnangi, Plateau Putorana		600
	region	1.02	
	L.L. Zanokha (1993, 1995, 2001, 2003, 5 ass. From Taimyr (?)	182	
	Walker et al. 2009, Yamal data report	101	66
	O. Sumina 1994, Disturbed sites, Chukotka	181	
	Sekretareva (1991, 1992, 1995, 1999, 2001,2003), Willows of E. Russ. Arctic,	235	164
	Razzhivin 1994, Chukotka snowbeds, summary Table in JVS		261
	Raynolds 2004, Kolyma R., ATLAS study		25
	Matveyeva subtotal	560	500
	Unpublished in field books		500
	2006, Bolshevik I.	250	
	2003, Plato Putorana alpine belt	31	
	1998, Taimyr Pen., 4 Ass.	90	
	1994, Taimyr Peninsula, 5 Ass.	180	
	1979, Maria Pronchitscheva Bay	4	
	1979, Taimyr, Cape Cheluskin	5	
	N. Matveyeva:		
	E.E. Kylygina, 2008, Pechora R. sandy outcrops	121	
	N. Koroleva, unpublished from Barents Sea coast		400
	N. Koroleva 1994, Kola Peninsula, JVS	250	
	S. Kholod 2007, Wrangel Island	691	400
	subtotal	100	490
	Others already in Excel		380
	2010 in prep, Barents Sea coastal communities		50
	2010 in prep, Dryas comm. in European Russia Arctic	100	60
	2010, marshes in Malozemelskaya tundra	100	_
	disturbed O. and I. Lavrinenko:		-
	Forbes (1995, 1996, 1997, Forbes & Sumina 1999) Yamal mostly	419	
Russia	V.D. Alexandrova, 1983, Franz Jozef Land	61	

Missing relevés

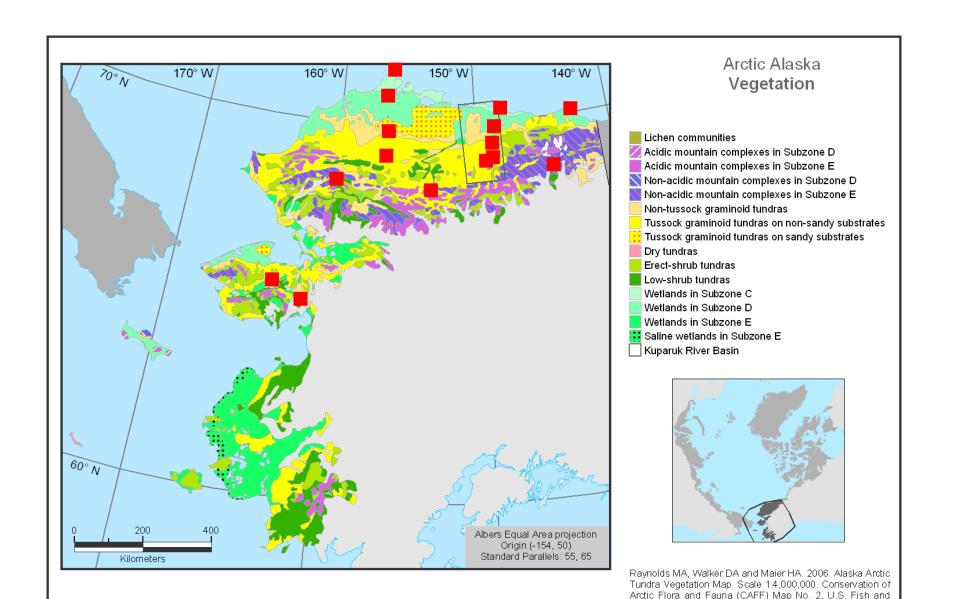
- Ermokina 2012. Yamal peninsula Russia
- Many other Russian releves
- Details of Svalbard releves
- Probably others in Greenland
- Iceland (?)
- Should we include the subarctic islands (e.g., Aleutians, Talbot has many releves). This is problematic because it will require addition of many species not in the Panarctic Flora.
- Status of Canada IPY database is uncertain, but Greg Henry assures us that he will send it as soon as he receives it.

Relevés for Northern Alaska Prototype

Initial focus will be on data sets with which we have strong familiarity and are readily accessible:

Location (author)	No. relevés
Barrow (Webber 1978)	33
Kaktovik and Barrow (Elias et al. 1994)	85
Prudhoe Bay (Walker 1981, 1985; Walker & Everett 1990)	93
Happy Valley (Walker et al. 1991)	55
Imnavait Creek (Walker et al. 1984, M.D. Walker 1994)	72
Toolik Lake (Walker et al. 1991, M.D. Walker 1994)	81
Westerm Arctic Transect (Edwards et al)	12
Seward Peninsula (Raynolds et al. 2002)	53
Pingos (M.D. Walker 1990), in VegBank	293
Bicomplexity study along Dalton Highway (Kade et al. 2005)	117
Riparian communities along Dalton Highway (Schikhoff et al. 2001)	85
Arctic poplar communities (Breen et al. in review)	25

Total: 1004 relevés


Other Northern Alaska Relevés

Data sets that will require communication with author or recovery of data sheets:

Location (author)	No. relevés
Northern Alaska Parks (Jorgenson et al. 2009)	263
Arrigetch Peaks (Cooper 1986)	372
Oumakik (Ebersole 1985)	85
Sand region of NPR-A (Komarkova)	Over 400

Total: 720+ relevés

Locations of Northern Alaska data sets

Northern Alaska hierarchical spatial information: From plants to the circumpolar Arctic

Toolik-Arctic Geobotanical Atlas Mapping the Arctic from plant to planet Circumpolar Arctic Alaska Plot Research Toolik Lake Upper Kuparuk Kuparuk Grid Study Region River Region River Basin

- An example of possibilities for Arctic observatories with deep map, vegetation, and species data sets.
- Useful for extrapolation of plot-level surveys and research to broader regions and the circumpolar Arctic.

 http://www.arcticatlas.org/

Hierarchical map browser by area and theme

Home

Overview

Maps

Map Browser

Map Catalog

Map Themes

Supporting Data

Photo Library

Bibliography

Glossary

About the TAGA

Contact Help - Using the TAGA Site Map Circumpolar Arctic Vegetation Map » Map Browser » TAGA Home » Maps » Map Browser

Map Browser

This section lists the maps that can be accessed by area or theme. You can also download the GIS data.

Choose a map area or a theme from the list below, or select a map area from the image to the right. Not sure which map to look at? See all the maps.

Available Map Areas: Available Themes:

Circumpolar Arctic
Arctic Alaska
Kuparuk River Basin
Upper Kuparuk River Region
Imnavait Creek Area
Toolik Lake Area
Toolik Lake Grid
Imnavait Creek Grid
Imnavait Creek Grid Plots
Toolik Lake Grid Plots

Alaska Arctic Tundra Vegetation Map AVHRR False-color Infrared Base Map Bioclimate Subzones Circumpolar Arctic Vegetation Map Elevation Floristic Provinces Hydrology and Watershed Boundary Lake Cover Landscape NDVI/Phytomass Spot False-Color Infrared Image Substrate Chemistry Toolik Lake Area Vegetation Toolik Lake Grid Vegetation Upper Kuparuk River Region Vegetation Vegetation

Arctic Alaska Kuparuk River Basin Upper Kuparuk River Region Imnavait Toolik Area Lake Creek Grid Grid plot

Circumpolar Arctic

Contact - Site Map - Help - AGC webmaster - © 2009 - Alaska Geobotany Center - Institute of Arctic Biology - University of Alaska Fairbanks

August 20, 2009

Map pages

Overview

Maps

Map Catalog CAVM AATVM Kuparuk Basin Vegetation - TFS Kuparuk Region Toolik Area Imnavait Area Toolik Grid Imnavait Grid

Photo Library

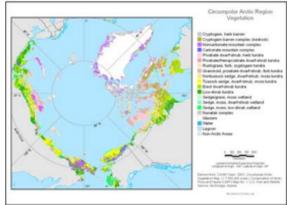
Supporting Data

Glossary

About the TAGA

Circumpolar Arctic Vegetation

CAVM Vegetation About the Vegetation Map Units Bioclimate Subzones Floristic Provinces AVHRR Elevation Lake Cover Physiography NDVI and Phytomass Substrate Chemistry Coastline Hierarchy of Geobotanical Vegetation Map Units


About the vegetation map units

Mapped polygons at 1:7.5 million scale contain many vegetation types. The map often portrays the dominant zonal vegetation within each mapped polygon. Zonal sites are areas where the vegetation develops under the prevailing climate, uninfluenced by extremes of soil moisture, snow, soil chemistry, or disturbance, and are generally flat or gently sloping, moderately drained sites, with fine-grained soils (Vysotsky 1927). Large areas of azonal vegetation that are dependent on specific soil or hydrological conditions, such as mountain ranges and large wetlands, were also mapped.

The legend contains five broad physiognomic categories:

- B barrens
- G graminoid-dominated tundras
- P prostrate-shrub-dominated tundras
- S erect-shrub-dominated tundras
- W wetlands

These are subdivided into 15 vegetation mapping units with numeric codes added to the alphabetic codes. The mapping units are named according to dominant plant functional types except in the mountains where complexes of vegetation are named according to the dominant bedrock (carbonate and noncarbonate mountain complexes). The coloring scheme of the map is suggestive of the physiognomy of the vegetation. The plant functional types are based on a variety of criteria including growth form (e.g., graminoids, shrubs), size (e.g., dwarf and low shrubs), and taxonomical status Available data: (e.g., sedges, rushes, grasses). The legend takes into special consideration the stature of woody shrubs, which is a major diagnostic feature of zonal vegetation in the Arctic (Edlund and Alt 1989, Walker et al. 2002, Yurtsev

Enlarge image

PDF

Metadata GIS data

Very steep bioclimate gradients occur in mountains, so these areas are mapped as complexes of elevation belts. Mountainous areas of the map are shown with hachures; the background color indicates the nature of the bedrock, and the color of the hachures indicate the bioclimate subzone at the base of the mountains.

Select a unit for more information and photos.

Barrens

B1. Cryptogam, herb barren

B2. Cryptogam barren complex (bedrock)

B3. Noncarbonate mountain complex

Carbonate mountain complex

Graminoid tundras

G1. Rush/grass, forb, cryptogam tundra

Map pages

Overview Maps

Map Catalog CAVM AATVM

Kuparuk Basin Vegetation - TFS

Kuparuk Region Toolik Area Imnavait Area Toolik Grid Imnavait Grid

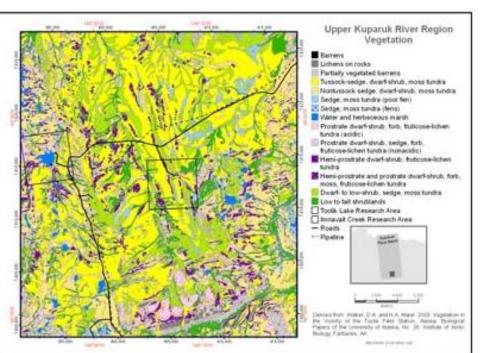
Photo Library Supporting Data

Bibliography

Glossary About the TAGA

Help - Using the TAGA Site Map

3 AGC webmaster


Select Language

Powered by Google™ Translate

Upper Kuparuk River Region

About the map

The upper Kuparuk River region has terrain typical of the Southern Foothills of the Brooks Range, including landscapes affected by three major glacial events. Map A shows the vegetation of the upper Kuparuk River region at 1:63,360-scale. Other maps show a false-color infrared satellite image, glacial geology, surficial geomorphology and Normalized Difference Vegetation Index (NDVI/biomass) - all at 1:225,000-scale. Maps A (Vegetation) and C (Glacial Geology) were derived from a geobotanical map of the region. The base map for the geobotanical map was a 1:25.000-scale black-and-white orthophoto-topographic map that was prepared especially for this project by Vexcel Corp., Denver, CO in 1994 from stereo pairs of 1:60,000-scale, 9 x 9-inch color-infrared aerial photographs that were obtained by NASA in 1982. The base map was prepared without ground-control points, but was registered as closely as possible to the 1:63,360 USGS map of the region. Vegetation and other geobotanical features were mapped by photointerpretation onto 1:25,000-scale enlargements of the 1982 NASA aerial photographs. The minimum mapping unit was approximately 0.6 ha (1/8" at 1:25,000-scale). No formal accuracy

Enlarge image

Links to vegetation descriptions

Home

Overview

Maps

Map Catalog
CAVM

AATVM
Kuparuk Basin
Vegetation - TFS
Kuparuk Region
Toolik Area
Imnavait Area
Toolik Grid
Imnavait Grid

Photo Library Supporting Data Bibliography Glossary About the TAGA

Circumpolar Arctic Vegetation Unit B1

CAVM Vegetation About the Vegetation Map Units Bioclimate Subzones Floristic Provinces AVHRR Elevation Lake Cover Physiography NDVI and Phytomass Substrate Chemistry Coastline CAVM Cites

Barrens: B1 - B2 - B3 - B4 || Graminoid Tundras: G1 - G2 - G3 - G4 || Prostrate-shrub Tundras: P1 - P2 || Erect-shrub Tundras: S1 - S2 || Wetlands: W1 - W2 - W3 Hierarchy of Geobotanical Vegetation Map Units (Walker DA 2002)

B1. Cryptogam, herb barren

Dry to wet barren landscapes with very sparse, very low-growing plant cover. Scattered herbs, lichens, mosses, and liverworts. Subzone A and B, some C at higher elevations.

Detailed Description

Dry to wet barren desert-like landscapes mainly in Subzone A and on some coarse-grained, often calcareous sediments in subzones B and C. Sparse (2-40%) horizontal plant cover, and very low vertical structure (generally <2 cm tall) with a single layer of plants where they occur. Dry herb barrens composed of few scattered vascular plants are present over much of the landscape. Snow-flush communities are often a conspicuous component, forming dark streaks on the otherwise barren lands, composed largely of bryophytes and cryptogamic crusts. In upland areas, vascular plant cover is generally very sparse (<2%), mainly scattered individual plants often in crevices between stones or small (<50 cm diameter) cryoturbated polygons. Sedges (Cyperaceae), dwarf shrubs, and peaty mires are normally absent.

Area: 225 x 1000 km².

Representative Syntaxa

Communities of the classes: Thiaspietea rotundifolii Br.-Bl. et al. 1947, (e.g., Papaveretum dahliani Hofm. 1968), Salicetea herbaceae Br.-Bl. et al. 1947, (e.g., Phippsietum algidae-concinnae Nordh. 1943).

Dominant Plants

The most common vascular plants are cushion forbs, graminoids, lichens, mosses, liverworts, and cyanobacteria.

Graminoid: Alopecurus alpinus; Deschampsia borealis/brevifolia; Poa abbreviata; Puccinellia angustata; Phippsia; Luzula nivalis[®]; Luzula confusa[®]; Lichen: Caloplaca; Lecanora; Ochrolechia; Pertusaria; Mycobilimbia; Collema; Thamnolia; Cetraria; Flavocetraria; Cetrariella; Stereocaulon;

Moss: Racomitrium; Schistidium; Orthothecium^D; Ditrichum^D; Distichium^D; Encalypta; Pohlia; Bryum; Polytrichum;

Liverwort: Gymnomitrion; Cephaloziella;

Cyanobacteria: Cyanobacteria;

Eskimonaesset, North Greenland, C. Bay. Enlarge image

a=acidic, n=non-acidic

Links to species descriptions

Home

Overview

Maps

Photo Library

Graphics Map Images Bioclimate Subzones

Photos-Vegetation TFS Plant Communities Vegetation Units TL Plot Photos

IC Plot Photos Plant Species

Supporting Data

Bibliography Glossary

About the TAGA

Photo Library

Alphabetical list of plant species: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Papaver dahlianum subsp. polare

Family name: Papaveraceae

Common name: Svalbard poppy

Growth form: Forb

Names used on the Toolik-Arctic Geobotanical Atlas maps:

Circumpolar Arctic Vegetation Map: Papaver dahlianum ssp. polare

Select image to enlarge

Flowering plant

Båtsfjord: Austerelva, 1983. Image author: **Kjell M. Sarre** ©

Website: Norwegian Botanical Association

Source of original image

For more information about this plant:

Panarctic Flora

Flora of the Canadian Arctic Archipelago

Nomenclature:

Vascular Plants:

Elven, R., Murray, D.F., Razzhivin, V.Y. & Yurtsev, B.A. (2006): Checklist of the Panarctic Flora (PAF). Vascular plants. University of Oslo, Oslo. Annotated Checklist of the Panarctic Flora (PAF) Vascular plants, version 1.0, 2011

Other possible sources for additional information and photos:

Botanika Fotogalerie

Cofrin Center for Biodiversity, Herbarium - University of Wisconsin

DELTA (DEscription Language for TAxonomy)

Den virtuella floran

Digital Natural History of Newfoundland and Labrador

Flora Danica Online

Flora of North America

Josef Hlasek - Photo Galleries

Leif & Anita Stridvall Plant Gallery

Lichen Herbarium - University of Oslo, Norway

Linnean Herbarium - Swedish Museum of Natural History

Michael Luth - Pictures of Bryophytes

Norwegian Botanical Society

Plants of Iceland

Robert W. Freckmann Herbarium - University of Wisconsin

The Plant List

USFS National Lichens & Air Quality Database and Clearinghouse

Wisconsin Bryophytes

Links to plot data

Home

Overview

Maps

Photo Library

Supporting Data

TL Plots

Bibliography

Glossary

About the TAGA

Supporting Data Data Reports

Supporting information includes the baseline plot information for vegetation, soils, and site factors for the study plots at Toolik Lake, Imnavait creek, Happy Valley, Prudhoe Bay, and elsewhere.

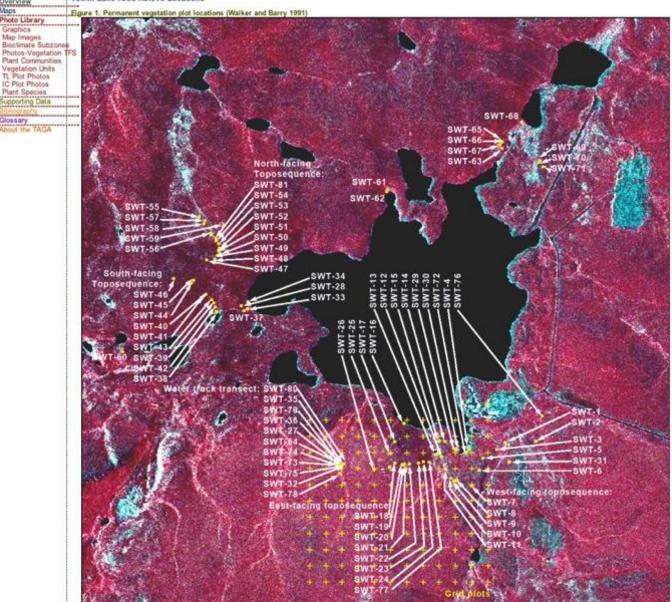
Toolik Lake Permanent Vegetation Plots
Imnavait Creek Permanent Vegetation Plots

Happy Valley data report Prudhoe Bay data

Photo Library Graphics Map Images Bioclimate Subzones

Plant Communities Vegetation Units TL Plot Photos IC Plot Photos Plant Species Supporting Data Glossary About the TAGA

Photo Library


Toolik Lake Area

Graphics § Map Images § Vegetation Map Unit Photos § Plant Community Photos § Circumpolar Arctic Bioclimate Subzone Photos § Photos-Vegetation TFS § Toolik Lake Permanent Vegetation Plot Photos § Imnavait Creek Permanent Vegetation Plot Photos

Select the link below for more information (blue link returns you to the Maps section of the TAGA; tan link returns you to the Supporting Data section).

Plot locations

Toolik Lake Area Releve Locations Overview Maps

Species and environmental data in a variety of formats

Toolik Lake Permanent Vegetation Plots

Walker D.A. and Barry N. 1991. Toolik Lake permanent vegetation plots: site factors, soil physical and chemical properties, plant species cover, photographs, and soil descriptions. Data Report 48, Department of Energy R4D Program, Institute of Internation of Internation of Program, Institute of Internation of Program, Institute of Internation of Inter

Table 6. Toolik Lake permanent plot species data

PDF - MS Excel

	PDF - MS Excel																																		
		SWT- 1	SWT- 2*	SWT-	<u>SWT-</u> <u>\$</u>	5 <u>WT-</u>	SWT-	SWT- 7	SWT- 8^	SWT- 9	SWT- 5	SWT- SW 11* 1:	/T- <u>SWT</u> 2 13*	SWT- S 14*	WT- SW 15 16	T- <u>SWT</u>	SWT- 18	SWT- 19	SWT- 20	SWT- 21	SWT- 22	SWT- 23	SWT- 24	SWT- 25	SWT- 1	SWT- 5	SWT- S 28	WT- SV 29 3	NT- SV 0* 3	VT- SWT- 1 32*	SWT- 33	SWT- 34*	SWT- 35*	SWT- 9	SWT 37*
ΑI	lgae	-	_	2	-	_	_	-	_	<u> </u>	10		2 10	14	10 11		10	10	20	21		20	2.4	20	20	21	20	20 0		1 02	50	-	00	50	01
	ostoc commune				+																								1						1
	hrub																																		
v)	ndromeda olifolia	+							+		+			+							+	+	+	+							r	+			r
v	ctous alpina ctous rubra					4			+		+			+				1				+	+						+						
le	etula nana s.l.	r		4		r	4		1	1				r				1	+	r	•	•	•	3	3	+	+			3	r	•		4	
	assiope tragona	r		1					r	3	2							1	3	+	1	1	1	1	1					1		r	+		
Ŵ	apensia																																		
	oponica ssp. oovata					+			+									+																	
	yas integrifolia yas octopetala							+ 3		2	2						3	+	2	3	3	3	3									1			r
'n	mpetrum nigrum						+	3	1	+						-	3	-			r			_	_								_		
	ermaphroditum edum palustre						•																	•									•		
3	p. decumbens			4		+	+		1	1								2		+	r			2	3					2		+	1	+	
	oiseleuria ocumbens	r				+			2									+	1														+		
c	otentilla fruticosa	1	1																								r				2				
	otentilla palustris vrola asarifolia	+								+													+												
	hododendron oponicum																			+	+	+										+			
ì	ubus										r										r			+	1	1	+			+				4	
	alix sp.		1																						•									-	
a	alix alaxensis		4																																
	alix arctica alix chamissonis	2	1															r		+											1	1			
a	alix fuscescens													r																					r
	alix glauca alix lanata		2							2								+			r						5				3				
	hardsonii alix phlebophylla		2	r		_		r	+							+	_	_			r						5				3				
8	alix planifolia		1																	+				2	1	2				2				2	
	i <u>p. pulchra</u> alix reticulata	1	•							1	1			+	3			+	2	2	2		1	r	•	-				-	+	3		-	
À	alix rotundifolia														1																				
	oirea eauverdiana																																		
	accinium iginosum	1		1		+	1	r	1	2	+							2	1	r	+	+	+	+	+					1	+	+			
a	accinium vitis-			3		3	4	r	+	+	+						+	+		r	r			3	2					3		+	+	3	
	aea <i>minus</i> raminoid			-		-	-	-												-	-			-	-					,				-	
Л	ctagrostis		r																	r	+						r				+				
	tifolia rctophila fulva		•		3																								3						
	omus																																		