

Institute of Evolutionary Biology and Environmental Studies

Towards assessing biodiversity feedbacks to climate in the Arctic

... and potential future applications of the AVA

Gabriela Schaepman-Strub, Maitane Iturrate, Inge Juszak, Reinhard Furrer

Institute of Evolutionary Biology and Environmental Studies, and Institute of Mathematics University of Zurich, Switzerland

Arctic Vegetation Archive Workshop, 14-16 April 2013, Krakow, Poland

Research Goals

- Large scale vegetation changes (tundra to shrubland to forest) and their effects on the shortwave albedo and evapotranspiration in the Arctic are expected to generate strong positive feedbacks to climate warming (Chapin et al., 2005; Swann et al., 2010).
- Flux towers measure energy fluxes at local scale, as integrated signal of heterogeneous land surfaces and vegetation types.
- Little is known about role of different vegetation types on energy fluxes.
- Test effects of shrubification and biodiversity on plant traits and components of the energy balance, special emphasis on scaling and spatio-temporal effects.

Funding

University of Zurich Research Priority Programme on Global Change and Biodiversity 2013-2016 (funded; planned until 2024)

Swiss National Science Foundation (2012-2015)

Cross-scale quantification of vegetationatmosphere interactions and biodiversity change

General Hypothesis

Biodiversity affects land ecosystem-atmosphere interactions through biophysical and biogeochemical processes

Chapin et al., Frontiers in Ecology and Environment, 2008

Siberian Research Site Kytalyk, Indigirka Lowlands, NE Siberia

71°N 147°E

Siberian Research Site Kytalyk, NE Siberia, 71°N 147°E

Observational studies

- 1 species distribution and traits
- 2 vegetation composition effect on energy balance

Experiment

- 1 shrub effect on energy balance
- 2 biodiversity effect on plant traits

Modelling (3D radiation model DART)

- 1 Quantification of vegetation effect on energy balance components
- 2 Quantification of biodiversity effect on energy balance components

Statistical approach

Observation 1 – Species determination

Input from CAFF Flora group and AVA on standards (taxonomy and spatial sampling) very welcome!

Yakutian Tundra Record (published 1991)

- 66 locations in Yakutian tundra
- Methodology?
- Locations?
- Planned to be included in AVA?
- Conserve knowledge of Egorova

Page 7

Observation 2 – Energy balance of dominant vegetation types (start summer 2013)

Observational studies

- 1 species distribution and traits
- 2 vegetation composition effect on energy balance

Experiment

- 1 shrub effect on energy balance
- 2 biodiversity effect on plant traits

Modelling (3D radiation model DART)

- 1 Quantification of vegetation effect on energy balance components
- 2 Quantification of biodiversity effect on energy balance components

Statistical approach

Experiment 1 – Shrub Effect on ALT

Blok et al., GCB, 2010

Experiment 2 - Shrub Density and Height Effect on tPAR and Canopy Reflectance

Treatment

15 plots 2x2m² h height reduction d density reduction c control

Reduction of leaf area index h -0.30 \pm 0.13 d -0.27 \pm 0.09

Reduction of biomass h -40.2% ± 12 leaf, -9.2% ± 2.7 branch d -29.4% ± 4.6 leaf -29.4% ± 4.6 branch

Radiation effects

reflectance, NDVI (ASD)

transmitted PAR (Sunscan)

Shrub Density and Height Effect on Canopy Transmitted PAR

Fraction of transmitted PAR at ground []

Experiment 2 - Biodiversity Manipulation (Summer 2014)

Observational studies

- 1 species distribution and traits
- 2 vegetation composition effect on energy balance

Experiment

- 1 shrub effect on energy balance
- 2 biodiversity effect on plant traits

Modelling (3D radiation model DART)

- 1 Quantification of vegetation effect on energy balance components
- 2 Quantification of biodiversity effect on energy balance components

Statistical approach

3D Radiative Transfer Modelling - Discrete Anisotropic Radiative Transfer (DART)

- Simulation of radiative transfer in the Earthatmosphere system
- Landscape as 3D matrix of cells with turbid material and/ or triangles
- Combined ray-tracing and discrete ordinate method
- Any wavelength (interval) in visible, near-infrared, and thermal infrared
- Output: 3D energy fluxes, radiation budget, satellite images

Gastellu-Etchegorry,

Meteorology and Atmospheric Physics 102, 187–207, 2008

DART Model Parameterization

Wavelength range, resolution	400-2300nm, 1nm	
Leaf reflectance, transmittance	Integrating sphere and spectrometer	
Understorey reflectance	Spectrometer	
Sun and view angle	according to field measurements or scenarios	
Scene dimension	0.5 x 0.5 m (repetitive)	
Cell dimension	0.05 x 0.05 x 0.05 m ³	
Turbid medium	leaves only	14
Vegetation height	0.25 m +/- 0.05	
Leaf area index	0.0 – 2.8 m ² /m ²	
Understorey composition	50% litter, 24% green moss, 24% brown moss, 2% lichen	

Leaf Area Index and Normalized Difference Vegetation Index

Observational studies

- 1 species distribution and traits
- 2 vegetation composition effect on energy balance

Experiment

- 1 shrub effect on energy balance
- 2 biodiversity effect on plant traits

Modelling (3D radiation model DART)

- 1 Quantification of vegetation effect on energy balance components
- 2 Quantification of biodiversity effect on energy balance components

Statistical approach

Moving towards Pan-Arctic Feedbacks and Applications

 Improving ecosystem-environment models by linking sparse and local field data with low-resolution satellite data. Up- and downscaling between field data, meteorological and satellite data using Bayesian modelling.

Goal is spatio-temporal modelling and uncertainty assessment.

- 2. Plant species traits
 - Biodiversity modelling requires plant traits assessment
 - Arctic species underrepresented in current databases (eg. TRY)
 -> link of AVA with TRY?
- 3. Spatial heterogeneity and biodiversity assessement
 - Spatial sampling design
 - Spatial accuracy

4. AVA as validation data set for satellite products?
 -> CEOS I and Product Validation subgroup http://lovs.gsfc.nasa.gov/

Acknowledgement

Jean-Philippe Gastellu-Etchegorry and his crew

2012 Alexander Goetz Instrument Support Program Analytical Spectral Devices

Angela Erb, University of Massachusetts Crew of Trofim Maximov, IPBC, Yakutsk Crew of Ko van Huissteden, Earth&Climate, VU, Amsterdam

