### Geocryological Map of the USSR, 1: 2 500 000, 1991

(Editor E.D.Ershov, Moscow State University, Faculty of Geology, Geocryological department)



- Compiled for almost 20 years;
- Based on modeling (Kudryavtsev model):
  - $T_{ground} = T_{air} + \Delta T_{snow} + \Delta T_{vegcover} + \Delta T_{rain} + \Delta T_{insolation}$
- Based on cross-regioning matrix
  - *eg.* In Russia: West Siberian Lowland>superimposed 3 climatic zones>superimposed 3 snow cover provinces>superimposed lithologic, relief and so on, areas
  - "calculation table" is built with initial and boundary conditions, and substrate properties covering real combination of local factors: snow and vegetation insulation, slope insolation, water infiltration, and so on, controlling thermal properties.
- Mapped is a range of realistic calculated ground temperatures. Can be mapped in any scale.
- Reflects a time slice of 20 years from 50-s to 70-s.



## Active layer and permafrost boreholes along the Yamal transect

M.O. Leibman, A.A.Gubarkov, A.V. Khomutov, N.G.Moskalenko, P.T.Orekhov

## Forcing factors for ground temperature (T) and active layer depth (ALD)

#### **Temporal**:

Short-term Summer and winter air temperature; cover Winter and summer precipitation; Moisture content in the active layer Long-term Vegetative

Surface deposits Ice content in permafrost

Spatial: Topography Lithology Cryogenic structure

## Specific environmental and climatic features affecting permafrost on Yamal

Popov

|                 | Zonal (genera<br>– Air temp<br>– Topogra<br>– Vegetati<br>– Peat cov<br>Azonal:<br>– Thaw in<br>– Topogra<br>– Freeze in<br>– Highly co<br>to clay a | al lowering nort<br>perature gradient<br>phy gradient<br>on mat thickness<br>er thickness<br>dex rising landy<br>phy rising landy<br>ndex rising wes<br>liverse lithology<br>nd peat | (Bely Island)<br>-137.4<br>+10.6<br>38/0.33<br>Kharasavey<br>-125.0<br>+14.4<br>Tyurin-To<br>-133.5<br>+17.8<br>40/0.3<br>Marre-Sale<br>-116.3 (DMF)<br>+17.7 (DMT)<br>+17.7 (DMT)<br>-13.0<br>-13.0<br>+14.0<br>-13.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>+19.0<br>-13.0<br>-13.0<br>+19.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13. |                                |                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|
|                 | 1969-1988                                                                                                                                            | 1991-1999                                                                                                                                                                            | Warming<br>degree month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ground temperature<br>rise, °C | -110,6<br>+19,5                         |
| Freeze<br>index | -116,3                                                                                                                                               | -110,6                                                                                                                                                                               | 5,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,08*5,7=0,46                  | 36/031                                  |
| Thaw<br>index   | +17,7                                                                                                                                                | +19,5                                                                                                                                                                                | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,18*1,8=0,32                  | Novy Port<br>-132.2                     |
| Sum             | -98,6/12=-8,2                                                                                                                                        | -91,1/12=-7,6                                                                                                                                                                        | 7,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,78                           | +29.5<br>Averaged for 1969-1988 33/0.44 |

## Averages of mean annual air temperature for 1961-1990 and 1995-2005 (after G.V.Malkova and A.V.Pavlov, 2005)



### Lithology, ice content, cryogenic structure

- Plain with relatively low altitudes.
- Highly dissected topography, providing good drainage at the hilltops and terraces.
- A wide range of lithologic complexes from sand, sometimes with gravel, to clay and peat.
- Polygonal structures with either ice or sand wedges contribute to erosion rates and good drainage.
- Tabular ground ice in 10 and even more meters thick layers, found at various depths, including those close to the surface.
- Salinity, resulting from marine sedimentation, well preserved in permafrost (near the surface) north of Yuribei river, and 5-10 m deeper south of it.

# Factors specific for research polygons in Tundra zone with continuous permafrost distribution



## Ground temperature

Geothermal gradient ~ 0,03°C/m. Depth of zero annual amplitude 10-15 m depending on ground temperature. TG-TAL=0,3 to 0,45°C.





**Figure 2.** Terms used to describe the ground temperature relative to 0°C, and the state of the water versus depth, in a permafrost environment (modified from van Everdingen, 1985}. In MULTI-LANGUAGE GLOSSARY of PERMAFROST and RELATED GROUND-ICE TERMS Compiled and Edited by: Robert O. van Everdingen 1998 (revised 2005)

# Mean annual ground temperature at the active layer base, Laborovaya, sandy and clayey sites



Dates of the thaw and refreezing period in boreholes Lab 1-1 and 1-2 at a clayey site

| Borehole                                 | Lab 1-1                | Lab 1-2                                  | Lab 1-1         | Lab 1-2 |  |
|------------------------------------------|------------------------|------------------------------------------|-----------------|---------|--|
| Depth, cm                                | Sprin                  | g thaw                                   | Fall refreezing |         |  |
| 0                                        | 06.06                  | 09.06                                    | 28.09           | 07.10   |  |
| 20                                       | 18.06                  | <b>18.06</b>                             | 19.10           | 11.10   |  |
| 50                                       | 14.07                  | 08.07                                    | 14.10 (?)       | 05.11   |  |
| 90/99                                    | 31.07                  | 28.07                                    | 15.10(15.12)    | 15.10   |  |
| San<br>24<br>9<br>9<br>9<br>9<br>9<br>10 | o    -20,0  -15,0    0 | 2.08.2008 1<br>Temperature<br>-10,0 -5,0 | 9.12.2008       | 0 15,0  |  |

### Mean annual ground temperature at the active layer base, Vaskiny Dachi, GOA





#### Dates of the thaw and refreezing period in boreholes VD-1 (clayey), VD-2 (clayey) and VD-3 (sandy)

| Borehole  | VD 1        | VD 2      | VD 3     | VD 1            | VD 2                    | VD 3     |
|-----------|-------------|-----------|----------|-----------------|-------------------------|----------|
| Depth, cm | Spring thaw |           |          | Fall refreezing |                         |          |
| 0-6       | 13.06.08    | 11.06.08  | 11.06.08 | 30.09.08        | 29.09.08                | 28.09.08 |
| 25        | 24.06.08    | 21.06.08  | 27.06.08 | 10.10.08        | 01.10.08                | 01.10.08 |
| 50        | -           | 02.07.08  | 12.07.08 |                 | 02.10.08-<br>02.11.08** | 02.10.08 |
| 100       |             | 16.09.08* | 06.08.09 | -               | 30.09.08***             | 01.10.08 |

\*Date of maximum negative temperature -0,14°C. \*\* Zero curtain. \*\*\*Date of the start of lowering of negative temperature: start of refreezing upward.

### Mean annual ground temperature at the active layer base, Vaskiny Dachi, CALM and SBRAS



Dates of the thaw and refreezing period in boreholes VD-CALM (sandy), AG19/3 (clayey)

| Borehole  | VD CALM     | АГ19/3    | VD CALM         | АГ19/3     |
|-----------|-------------|-----------|-----------------|------------|
| Depth, cm | Spring thaw |           | Fall refreezing |            |
| 0-3       | 11.06.08    | 03.07.08  | 28.09.08        | 07.10.08   |
| 10        | 09.07.08    | 04.07.08  | 04.10.08        | 09.10.08   |
| 100       | 30.07.08*   | 06.08.08  | 15.11.08**      | 05.10.08   |
| 150       | 24.08.08*   | 30.09.08* | 24.11.08**      | 04.12.08** |

\* Date of maximum negative temperature -0,16°C at 100 cm and 1,06°C at 150 cm. \*\* Date of the start of lowering of negative temperature: start of refreezing upward.

# Mean annual ground temperature at the active layer base, Bely Island

September 15, 2009



# Mean annual ground temperature at the active layer base, conclusion

•Mean annual ground temperature at the active layer base (and layer of zero annual amplitude) follows zonal pattern when compared are similar landscape conditions. As a rule, on sandy plots temperature is lower, than on clayey ones.

•Distortion is found when snow accumulation is higher than average. Even in the coldest Arctic tundra on Bely Island ground temperature beneath the snowpatch is higher, than on bare windblown sands of Vaskiny Dachi in typical tundra.

## Average active layer depth

#### Zonal changes of the climatic parameters affecting permafrost

|                                   | Date                           |                                 | Length of          | Mean                             | Mean annual                             |
|-----------------------------------|--------------------------------|---------------------------------|--------------------|----------------------------------|-----------------------------------------|
| Polygons                          | Start of the<br>thaw<br>period | Finish of<br>the thaw<br>period | the thaw<br>period | annual air<br>temperature,<br>°C | ground<br>temperature at<br>the AL base |
| Nadym<br>(W/s Nadym)              | 14.05.08                       | 07.10.08                        | 146                | -3,5                             | -0,1                                    |
| Laborovaya<br>(W/s Salekhard)     | 26.05.07                       | 12.10.07                        | 137                | -3,6                             | -0,92,1                                 |
| Vaskiny Dachy<br>(W/s Marre-Sale) | 13.06.08                       | 07.10.08                        | 117                | -7,2                             | -6,4                                    |
| Bely Isalnd<br>(W/s Popov)        | 20.06.09                       | 14.10.09                        | 117                | -9,7                             | -                                       |

### Calculation of maximum thaw depth (GOST..., 1984)

|                    | Thaw index, degree hours |                              | $K_{max}(\Omega_{max}/\Omega)^{1/2}$ | Average thaw          | Maximum average          |
|--------------------|--------------------------|------------------------------|--------------------------------------|-----------------------|--------------------------|
| Sites              | Annual<br>(Ωmax)         | By the probe date $(\Omega)$ | (% of thaw by the<br>probe date)     | depth by<br>probe, cm | calculated<br>(measured) |
| Nadym peat         | 37806                    | 28347                        | 1,075/93%                            | 84                    | 90                       |
| Nadym sand         | 52800                    |                              |                                      | 147                   | 158                      |
| Laborov sand       | 24200                    | ~21816                       | 1,0554/95%                           | 104                   | 110                      |
| Laborov clay       | ~24300                   |                              |                                      | 80                    | 84                       |
| VD CALM sand       |                          | 16457                        | 1,0872/92%                           | 93                    | 101                      |
| VD IV terrace      | 10452                    |                              |                                      | 75                    | 82                       |
| VD III terrace     | 19432                    |                              |                                      | 72                    | 78                       |
| VD II terrace      |                          |                              |                                      | 113                   | 123                      |
| Kharasavey clay    |                          | 12811                        | 1, 23/81%                            | 61                    | 75                       |
| Kharasavey<br>sand | 19452                    | 13210                        | 1,21/82%                             | 75                    | 91                       |
| Kharasavey<br>sand |                          | 13450                        | 1,20/83%                             | 78                    | 94                       |
| Bely sand          | 12204                    | 2996                         | 2,02/50%                             | 58                    | 117 (99,8/98,3)*         |
| Bely clay          | 12204                    | 3175                         | 1,97/51%                             | 32                    | 63 (54,4/53,8)*          |

## Averages of calculated maximum active layer depth on Yamal transect

| Sites                               | Maximum thaw depth, cm |          |  |
|-------------------------------------|------------------------|----------|--|
| Nadym, sand                         | 158                    |          |  |
| Nadym peat                          |                        | 90       |  |
| Laborovaya clay                     | IT ALL AND             | 84       |  |
| Laborovaya sand (surface cover)     | 110                    |          |  |
| Vaskiny Dachi, CALM (surface cover) | 101                    | 10 1 1 V |  |
| Vaskiny Dachi, clay                 |                        | 82       |  |
| Vaskiny Dachi, silt                 |                        | 78       |  |
| Vaskiny Dachi, sand (bare surface)  | 123                    |          |  |
| Kharasavey, clay                    |                        | 75       |  |
| Kharasavey, sand                    | 92,5                   |          |  |
| Bely Island, sand (bare surface)    | 117                    |          |  |
| Bely Island, clay                   |                        | 63       |  |

## Conclusions

- It is established that, on the whole, zonal distribution of bioclimatic subzones northward determines the consecutive change of various parameters of permafrost. However, local factors connected to relief, drainage degree, location of plots on different landforms, which determine snow accumulation and vegetation mat thickness, distort zonal pattern which is much more apparent when similar landscapes are compared.
- The zonal changes in the depth of thaw and ground temperature from south northward in similar landscape conditions are determined by the lower air temperature and reduction of vegetation mat in this direction. Non-zonal relief lowering northward contributes to the zonal pattern, which is clearer traced within the landscapes on clayey soils rather than on sandy ones.

