Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography

D. A. WALKER
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA

Abstract

Current land-cover classifications used for global modelling portray Arctic tundra as one or two classes. This is insufficient for analysis of climate–vegetation interactions. This paper presents a simple three-level vegetation-map legend system useful for modelling at global, regional, and landscape scales. At the highest level (global scale: 10^7–10^8 km^2) the Tundra Zone is divided into four subzones based on vegetation response to temperature along the latitudinal temperature gradient from north to south: (1) Cushion-forb, (2) Prostrate Dwarf-shrub, (3) Erect Dwarf-shrub, and (4) Low Shrub subzones. The boundaries follow a modification of Yurtsev’s phytogeographic subzones. Parent material and topography are also major considerations at global, regional, and landscape scales. Soil pH is a key variable for many ecosystem responses, and a division into acidic (pH 5.5 or less) and nonacidic soils is used. A conceptual mesotopographic gradient is used to characterize the influence of soil-moisture and snow regimes. The example legend framework focuses on the Northern Alaska floristic subprovince, and could be expanded to other floristic provinces using local expert knowledge and available literature. Dominant plant functional types within each habitat type within the four subzones are also presented. Modellers could include or ignore different levels of resolution depending on the purpose of the model. The approach resolves conflicts in terminology that have previously been encountered between the Russian, North American, and Fennoscandian approaches to Arctic zonation.

Keywords: Arctic, classification, climate change, climate, geology, plant functional types, soils, tundra, vegetation mapping, vegetation, zonation

Introduction

There is growing evidence that the effects of global climate change will be particularly strong in the Arctic and that numerous difficult-to-predict indirect responses to climate change are likely to occur (Chapin et al. 1992; Oechel et al. 1997). The effects could vary considerably across the Arctic because of different regional climate responses and major differences in vegetation types and other ecosystem properties that occur across about 30° of latitude and a 10 °C mean-July temperature gradient. For example, there is about a five-fold increase in vascular plant species along the gradient (Young 1971; Rannie 1986). Within the soils, the amount of organic carbon varies from negligible amounts in the far north to an average of nearly 50 kg m^-2 near treeline (Bockheim et al. 1996). There is approximately a 25× increase in average plant canopy height, a 10× increase in primary production, a 30× increase in biomass, and similar increases in the number of invertebrate and vertebrate taxa (Bazilevich et al. 1997; Chernov & Matveyeva 1997). The major differences in vegetation are not depicted on any existing global map. Current global land-cover classifications usually portray tundra regions as one or two broad land-cover categories (e.g. Olson 1985; Prentice et al. 1992; Steffen et al. 1996). Additionally, tundra vegetation and soils are also the product of climate, parent-material and soil-moisture factors operating at a variety of spatial scales (Cantlon 1961; Walker 1985; Edlund & Alt 1989; Elvebakk 1994). The influence of soil pH is particularly important and often overlooked. The combined effects of climate, parent material and topography need to be
considered in models of vegetation response to climate change. This paper first summarizes the response of Arctic vegetation to these influences, and then presents a framework for a circumpolar legend, using the Northern Alaska floristic subprovince as an example.

Climatic influences

First and foremost is the separation of subzones and the drastic changes of many parameters (productivity, diversity, abundance) from the forest tundra up to the polar deserts. These changes are so great, that averaged values for the communities and ecosystems over the tundra zone as a whole are of little value. (Chernov & Matveyeva 1997)

In tundra regions, cooler shorter growing seasons poleward create a transition from relatively diverse and lush vegetation near tree line to barren ‘polar deserts’ with low diversity in the coldest areas. Different approaches for describing this gradient have been used in Russia, North America, and Fennoscandia (Table 1). A unification of these approaches is essential for global vegetation transitions from north to south. Although there is much conflicting terminology between the various approaches, there is rough agreement on the basic vegetation transitions from north to south.

For this paper, the Tundra Zone is defined broadly as the vegetation region north of the Arctic tree line, and includes the ‘polar deserts’ and ‘Arctic tundras’ of other approaches. Other authors have divided the region into as few as two subdivisions (Bliss 1997) and as many as seven (Alexandrova 1980). Here, the Tundra Zone is divided into four subzones with boundaries that generally follow Yurtsev’s phytogeographic subzones (Yurtsev 1994) (Fig. 1). These boundaries have evolved through a long tradition of Russian Arctic geobotanists (Gorodkov 1935; Lavrenko & Sochava 1954; Sochava & Gorodkov 1956; Alexandrova 1980; Yurtsev 1994; Chernov & Matveyeva 1997). There is, however, conflicting terminology and different boundary delineations even among Russian geobotanists that are not easily resolved (e.g. Yurtsev’s High Arctic Tundra vs. Alexandrova’s Polar Desert, Table 1). Treeless oceanic boreal areas are also shown in Fig. 1. These areas have cool summers and relatively warm winters. Although the low-growing vegetation is physiognomically similar to tundra, these oceanic areas show little floristic resemblance to tundra because of the dominance of boreal species (Tuhkanen 1984).

The names of the units in Fig. 1 are based on the transitions in the stature of woody plants on mesic sites along the temperature gradient. The height of woody plants has been shown to have a strong correlation with summer temperature (Walker 1987; Edlund & Alt 1989). Just north of tree line, low shrubs, 40–200 cm tall, dominate most mesic vegetation types, and northward there is a gradual reduction to first erect dwarf shrubs, and then prostrate forms, until in subzone 1 woody plants are totally absent in all habitats. There are also other changes in the nature of the plant canopy that are discussed in the descriptions below.

The main criterion for defining the four subzones of Fig. 1 is the vegetation type occurring on mesic sites found on plains with fine-grained soils, where the vegetation has developed fully under the prevailing macroclimate without alteration due to excessive or depleted drainage, snow, nutrients, disturbance or other factors. Such sites are referred to as the ‘plakor’ in Russia (Vysotskyi 1909). Some authors have subdivided the subzones based on difference of the vegetation in intrazonal areas, such as wetlands, snowbeds, and streamside areas. (For an example, see northern and southern variants of subzone 2 below.) These variants are not shown in Fig 1 because, in most cases, the circumpolar natures of the variants are not well known at present.

The concepts of zonal vegetation in the Arctic have been developed mainly in Russia, where the patterns have been well-known since the 1930s (Sochava 1934). Perhaps the best area for observing the transitions between all four subzones is the broad Taimyr Peninsula, where the zonal patterns have been recently described in English (Chernov & Matveyeva 1997). Zonal patterns have also been described from more maritime climates, such as Svalbard (Elvebakk 1985), Fennoscandia (Ahti et al. 1968), and southern Greenland (Feilberg 1984; Tuhkanen 1984). Very steep coastal temperature gradients and associated vegetation gradients occur in some areas where continental landmasses are adjacent to the cold waters of the polar seas (Sorensen 1941; Walker 1987). On large islands, such as Greenland, Svalbard, Ellesmere, and Axel Heiberg, the zonal patterns form narrow bands parallel to the coast (Feilberg 1984; Tuhkanen 1984; Brattbakk 1986). In northern Canada, zonal patterns are less clear than in the Russia because of the many islands and complex topography (Bliss 1997). Nonetheless, even in such conditions, vegetation patterns are clearly associated with temperature gradients (Edlund & Alt 1989).

Mean July temperatures at the southern boundaries of subzones vary between continental and oceanic areas. In continental areas, the mean July temperatures show roughly a 3 °C separation between the subzones (Edlund 1996; Matveyeva 1998) (Tables 1 and 2). In continental areas of Alaska, Canada and Russia, the treeline occurs at about the 12°C mean July isotherm. In more maritime
Table 1: Terminology cross-walk for Arctic Tundra subdivisions

<table>
<thead>
<tr>
<th>Subzone</th>
<th>Russia</th>
<th>North America</th>
<th>Fennoscandia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bliss (1997)</td>
<td></td>
</tr>
</tbody>
</table>

1. Cushion forb
- Northern polar desert: High Arctic tundra
 - Polar desert: (15–2°C)¹
- Southern polar desert

2. Prostrate dwarf shrub
- Northern Arctic tundra: Arctic tundra: northern variant
 - Arctic tundra: (5–6°C)
- Middle Arctic tundra: Typical tundra
 - Typical tundra: (8–10°C)
- Southern Arctic tundra

3. Erect dwarf shrub
- Northern sub-Arctic tundra: Northern hypo-Arctic tundra
 - Low Arctic
 - Low Arctic: (7–10°C)
 - Low Arctic: (7–10°C)
- Middle sub-Arctic tundra

4. Low shrub
- Southern sub-Arctic tundra: Southern hypo-Arctic tundra
 - Southern tundra: (10–12°C)

²Polunin (1951): Zones based roughly on openness of ground cover. High Arctic, very sparsely vegetated; Middle Arctic, open vegetation carpet; Low Arctic, closed vegetation carpet.
³Edlund & Alt (1989): Zones defined on the bases of mean July temperature and sum of mean temperature of days exceeding 0°C (thawing degree days, TDD).
⁴Tuhkanen (1986): Southern boundary of zones defined by Holdridge biotemperature as the sum of mean monthly temperatures >0°C divided by 12.
Fig. 1 Subzones of the Arctic Tundra Zone. The subzone boundaries are modified slightly from Yurtsev's (1994) phytogeographic boundaries. This map portrays Arctic tundra and treeless boreal subzones using a 0.5° × 0.5° grid-cell size, the same as that used in numerous global modelling efforts.
areas, mean July temperatures are closer to 10°C. Some authors consider the total amount of summer warmth to be a better index for defining the subzonal boundaries. For example, Young (1971) used the sum of the mean monthly temperatures greater than 0°C to define Arctic floristic zones. Other authors have used the seasonal total of daily mean temperatures above freezing (thawing degree days, TDD) (Edlund & Alt 1989), or the Holdridge biotemperature, which is the sum of the monthly temperatures exceeding freezing divided by 12 (Tuukkanen 1986). The boundaries shown in Fig. 1 will require further adjustment as better climate and vegetation information become available. For example, observations made at Expedition Fiord and other sites on north-western Axel Heiberg Island during the 1999 Canadian Circumpolar Arctic Vegetation Mapping transect indicate that subzone 1 just touches the coldest, foggiest, outer edge of the fjords. The inner fjords are all in subzone 2. In Russia, where there is a long heritage of using this zonal approach, such adjustments will be relatively minor, but in North America, more severe adjustments of the boundaries may be required.

Descriptions of the subzones

Subzone 1: cushion-forb subzone. In the coldest portions of the Arctic, the major parts of the land surface are largely barren, often with <5% cover of vascular plants. Permanent ice covers large areas of the land. Woody plants are absent. Lichens, bryophytes, cyanobacteria, and scattered forbs (e.g. Papaver, Draba, Saxifraga, Stellaria) are the dominant plants of the sparse vegetation cover. Many of the forbs, lichens and mosses have a compact cushion growth form. In midsummer, the Arctic poppy, *Papaver radicatum* s.l., is the most conspicuous plant over large portions of this subzone. Soil lichens, mosses, and liverworts can cover a high percentage of the surface, particularly in more maritime areas such as Novaya Zemlya (Alexandrova 1980). Rushes (*Luzula* and *Juncus*) and grasses (*Alopecurus, Puccinellia, Phippsia*, and *Dupontia*) are the main graminoid groups. Sedges are rare and wetlands lack organic peat layers. Well-vegetated surfaces occasionally occur on mesic sites, but there is little contrast in the composition of vegetation on mesic sites, streamside sites, and snowbeds. The vascular-plant flora is extremely depauperate, consisting of only about 50–60 species (Young 1971). On fine-grained soils, the extremely cold temperatures and the thin sparse plant canopy induce intense frost activity, which forms networks of small (<50 cm diameter) nonsorted polygons, and plants are confined mainly to the depressions between the polygons (Chernov & Matveyeva 1997).

Subzone 1 occupies a small portion of the Arctic Tundra zone (4.6%), where July mean temperatures are less than about 3°C. It includes mostly fog-shrouded islands within the permanent Arctic ice pack, such as Ellef Ringnes Island, Amund Ringnes Island, and nearby islands in the north-west corner of the Canadian Archipelago. It also includes the coastal fringe of northernmost Greenland and Ellesmere Island, the north-eastern portion of Svalbard, Franz Josef Land, Severnaya Zemlya, the northern tips of the Taimyr Peninsula, and northern tip of Novaya Zemlya. In Greenland, the most recent study explicitly addressing the status of subzone 1 is that of Bay (1997), who argues for a very limited delineation along Greenland’s northern coast.

This subzone is called ‘polar desert’ in Russia (Alexandrova 1980), Fennoscandia (Elvebakk 1985), and Greenland (Bay 1997), but this is not a good term for this subzone globally. In North America, ‘polar desert’ has been used to describe vegetation types (Bliss 1977) and zones (Tedrow 1977) with similar barren aspect, but many of these areas would not be considered ‘polar desert’ elsewhere. Desert-like barren landscapes are exceedingly common in subzone 1, but also occur extensively in subzones 2 and 3 in association with wind-blown plains or coarse-grained highly alkaline limestone, strongly acidic shales, and other surficial materials that are not conducive to plant growth (Edlund & Alt 1989). The vegetation types of these areas are not the same as in subzone 1 because they contain woody plants (e.g. *Dryas* and *Salix*), richer floras, and are part of more diverse regional mosaics of vegetation types. Floristic data and available meteorological data from these areas do not support placing them in subzone 1. Additionally, the term ‘desert’ implies an area with a deficit of moisture for plant growth. Despite low precipitation, most soils in subzone 1 are continuously moist during the summer due to fog, low evapotranspiration, and the presence of permafrost, which retain moisture at the soil surface. Cold arid grass-dominated deserts occur in some continental areas of subzones 2 and 3, such as the inner fiords of northern Ellesmere in the vicinity of Eureka and probably also Peary Land in north Greenland. Vegetation in these areas consist of sparse grasses and forbs (*Puccinellia angustata*, *P. poaeae*, *Poa hartzii*, *Brya thoril-wulfii*, *Gastrolychnis triflora*, *Potentilla pulchella*).

Subzone 2, prostrate dwarf-shrub subzone. In subzone 2, mesic, low-elevation surfaces with fine-grained soils generally have open, patchy plant cover, generally with 5–50% cover of vascular plants. Throughout the subzone, erect shrubby vegetation is lacking on mesic sites. Over broad areas, abundant nonsorted circles, stripes, and ice-wedge polygons interrupt the plant cover. In mesic areas,
<table>
<thead>
<tr>
<th>Subzone</th>
<th>Mean July temp. at southern sub-zone boundary (°C) [compromise value]</th>
<th>Sum of mean monthly temps above freezing at southern boundary (°C)</th>
<th>Vertical structure of plant cover</th>
<th>Horizontal structure of plant cover</th>
<th>Total phytomass (above ground + below ground + live + dead) (t ha⁻¹)</th>
<th>Net annual production (above ground + below ground) (t ha⁻¹ y⁻¹)</th>
<th>Number of vascular plant species in local floras</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cushion forb</td>
<td>2–3 [3]</td>
<td>6</td>
<td>Mostly barren. In favourable microsites, 1 lichen or moss layer 2 cm tall, very scattered vascular plants hardly exceeding the moss layer; no woody plants</td>
<td></td>
<td>3</td>
<td>0.3</td>
<td><50</td>
</tr>
<tr>
<td>2. Prostrate dwarf shrub</td>
<td>5–7 [6]</td>
<td>12</td>
<td>2 layers, moss layer 3–5 cm thick and herbaceous layer 5–10 cm tall, prostrate and hemi-prostrate dwarf shrubs</td>
<td>5–50% cover of vascular plants, open patchy vegetation</td>
<td>20</td>
<td>2.3</td>
<td>75–125</td>
</tr>
<tr>
<td>3. Erect dwarf shrub</td>
<td>8–10 [9]</td>
<td>20</td>
<td>2 layers, moss layer 5–10 cm thick and herbaceous/dwarf-shrub layer 10–40 cm tall</td>
<td>50–80% cover of vascular plants, interrupted closed vegetation</td>
<td>57</td>
<td>3.3</td>
<td>150–250</td>
</tr>
<tr>
<td>4. Low shrub</td>
<td>10–12 [12]</td>
<td>35</td>
<td>2–3 layers, moss layer 5–10 cm thick, herbaceous/dwarf-shrub layer 20–30 cm tall, sometimes with low-shrub layer to 80 cm</td>
<td>80–100% cover of vascular plants, closed canopy</td>
<td>107</td>
<td>3.8</td>
<td>200 to >450</td>
</tr>
</tbody>
</table>

1 Mean July temperatures based on Edlund (1996) and Matveyeva (1998) with a compromise value for global modeling in continental areas.
2 Sum of mean monthly temperatures from Young (1971).
3 Vertical and horizontal structure from Chernov & Matveyeva (1997).
4 Based on Bazilovich & Tishkov (1997) for Russian Arctic.
5 Number of vascular species in local floras based on Young (1971).
vascular vegetation is often confined to protected habitats provided by cracks and depressions in the polygonal network, and areas irrigated by runoff from snow patches. The dominant growth forms on mesic sites are prostrate and hemi-prostrate (<10 cm) dwarf shrubs (e.g. Dryas, Salix arctica, S. polaris, Cassiope tetragona), forbs (e.g. Draba, Saxifraga, Minuartia, Cerastium, and Papaver), graminoids (e.g. Carex stans, Carex rupestris, Alopecurus alpinus, Deschampsia borealis, Luzula confusa), mosses and lichens. Dryas and prostrate dwarf willows (Salix polaris, S. arctica) are the primary shrubby species in the northern part of subzone 2. Arctic and Arctic-alpine floristic elements are dominant. Ericads (excluding Cassiope) and dwarf birch (Betula) are nearly absent. Sedges are often important on mesic sites, and are dominant in wet areas. Rushes (Luzula) are also an important component of many mesic vegetation types. Cassiope becomes more important in the southern part of the subzone, particularly in early melting, well-drained snow beds, and in areas with acidic parent material. Some authors subdivide subzone 2 into two variants (Yortsev 1994) or two zones (Elvebakk 1999; Fredskild 1998). Subzone 2 is not subdivided here because in much of North America, especially where nonacidic soils are prevalent, the vegetation on mesic sites is not sufficiently different to justify such subdivision, although there are significant differences in the vegetation of snow-bed, wetland, and streamside areas.

The mean July temperature at the southern boundary of subzone 2 is approximately 6°C. This subzone covers about 35% of the Tundra Zone, including most of the islands in the Canadian Archipelago, most of northern Greenland, south-western Svalbard, Novaya Zemlya, most of the northern fringe of mainland Russia, and the New Siberian Islands.

Subzone 3, erect dwarf-shrub subzone. The boundary between subzones 2 and 3 is considered of highest rank because it separates the northern dry tundras on mineral soils from the southern relatively moist tundras with moss carpets and peaty soils (Alexandrova 1980). The major difference in pedology causes dramatic changes to the vegetation. The plants in subzone 3 have strong hypo-Arctic affinities (sensu Yurtsev et al. 1978). Important hypo-Arctic species such as birch, alder, willow, and heath plants extend their ranges from the lower layer of sub-Arctic woodlands. Dwarf birch (Betula nana, B. exilis, B. glandulosa) is common in subzone 3 except on calcareous soils, where it is often absent.

The plant canopy is usually interrupted by patches of bare soil caused by nonsorted circles, stripes, and a variety of other periglacial features (‘spotty tundra’ in the Russian literature). Vascular plants generally cover about 50–80% of the surface. Zonal vegetation on gently sloping upland surfaces consists of sedges (e.g. Carex bigelowii, Carex membranacea, Eriophorum triste, E. vaginatum, Kobresia myosuroides), prostrate and erect dwarf (<40 cm tall) shrubs (e.g. Salix planifolia, S. lanata ssp. richardsonii, S. reticulata, S. arctica, Betula exilis, Dryas integrifolia), and mosses. Woody hypo-Arctic species (e.g. Salix species, Betula, Vaccinium, Ledum, Empetrum, etc.) occur but are not dominant. Low shrubs (>40 cm tall) occur along streams, but tall (>200 cm) shrub thickets are rare. The role of shrublands is much less prominent than in subzone 4. Prostrate-dwarf-shrub communities, which were common in subzone 2, are confined mainly to wind-swept sites, snowbeds, and calcareous rocks. The moss layer, consisting primarily of Tomentypnum, Hylocomium, Aulacomnium, and Sphagnum, contributes to the development of organic soil horizons on fine-grained soils. Soils on most mesic surfaces have peaty surface horizons and are often acidic (pH below 5.5), except where the soils are influenced by loess or other factors that maintain a higher soil pH.

There is also more regional variation in the zonal vegetation than in subzones 1 and 2. Tussock tundra consisting of cottongrass tussocks (Eriophorum vaginatum) and dwarf shrubs is common on fine-grained acidic soils over much of north-eastern Siberia and northern Alaska (Walker et al. 1994), particularly in areas that were unglaciated during the last part of the Pleistocene. In transitional areas to subzone 2 and on nonacidic loess, Dryas spp. and Cassiope tetragona are important (Walker & Everett 1991). Some continental areas of Russia have dry steppe tundras that are relics of a cold, dry Pleistocene vegetation (Yurtsev 1982).

Climatically, subzone 2 receives predominately Arctic air masses, while subzone 3 receives relatively temperate air during the summer. The mean July temperatures in subzone 3 are about 6–9°C. Subzone 3 covers about 33% of the Arctic Tundra Zone, including much of northern Alaska, the southern parts of Banks Island and Victoria Island, much of Keewatin, southern Baffin Island, most of southern Greenland, and a broad band across Siberia and Chukotka.

Subzone 4, low-shrub subzone. In subzone 4, the zonal vegetation is dominated by hypo-Arctic low shrubs that are often greater than 40 cm tall (e.g. Betula nana, B. exilis, B. glandulosa, Salix glauca, S. phylicifolia, S. planifolia, S. richardsonii, Alnus spp.). In some moister areas such as west Siberia and north-west Alaska, thickets of birch or willow species over 80 cm tall occur on zonal sites. In more continental areas and areas with less snow cover, the shrubs are shorter and form a more open canopy (Alexandrova 1980). In northern Alaska and eastern Siberia, tussock tundra is common and has more shrubs than in subzone 3. True shrub tundra with dense covers up about 25–80% of the surface at the northern boundary of the subzone. Shrubs of subzone 4 are important for the water balance on the surface. The shrub canopy is very important for surface runoff, and the subzone is usually drier than subzone 3 in the same air masses.

25 HIERARCHICAL SUBDIVISION OF ARCTIC TUNDRA
canopies of birch, willows, and sometimes alder (*Alnus*) occur in many areas. Low shrubs are abundant along most water courses. Toward the southern part of subzone 4, in flat areas that are continuous with the boreal forest, patches of open forest penetrate into this area along riparian corridors. These woodlands consist of a variety of species of spruce (*Picea*), pine (*Pinus*), cottonwood (*Populus*), and larch (*Larix*) and tree birches (*Betula*). Peat plateaus (palsas) up to 1.5 m tall are common in lowland areas. Subzone 4 is the warmest part of the Arctic Tundra Zone with mean July temperatures of 9–12°C, and covers about 32% of the zone.

East–west floristic variation within the zones

Russian geobotanists have described longitudinal subdivisions within the subzones that are based primarily on floristic differences (Yurtsev 1994). These divisions are useful for characterizing the considerable E–W floristic variation within the subzones, particularly in subzones 3 and 4. In the more northern two subzones, the Arctic has a remarkably consistent core of circumpolar Arctic plant species that occur around the circumpolar region. Further south, local E–W variation is related to a variety of factors, including different palaeohistories and the greater climatic heterogeneity. Large N–S trending mountain ranges, primarily in Asia, have also restricted the exchange of species between parts of the Arctic (Alexandrova 1980). Yurtsev (1994) delineated six floristic provinces and 20 subprovinces and has discussed their characteristics. The Northern Alaska subprovince is used later in this paper in an example of a framework for a circumpolar Arctic vegetation map. This area covers the region north of the Brooks Range, from the Mackenzie River westward to about Point Lay.

Altitudinal belts

Mountains and plateaus in the Arctic show pronounced altitudinal belts that reflect the latitudinal zonation. For example, in the Alaskan Brooks Range, which lies within subzone 4, an altitudinal belt that is dominated by *Dryas octopetala*, occurs between about 1000 m and 1500 m and is similar to the vegetation of subzone 2. Above 1500 m the vegetation takes on a distinctly polar-desert physiognomy, dominated by lichens, mosses and cushion forbs, similar to subzone 1 (Cantlon 1961). For continental areas, the approximately 3°C mean July temperature separation between the subzones and the environmental adiabatic lapse rate (6°C per 1000 m; Barry 1981) can be used to model the vegetation with respect to elevation within each subzone (Fig. 2). With more data, a diagram using thawing-degree-days or Holdridge biotemperatures could be constructed that would apply to both continental and oceanic areas.

Geological influences

Within each of the...subzones and altitudinal belts, geological processes have produced a rather wide range of soil parent materials which exert a segregating action on the biota producing vegetation patterns of various sizes. (Cantlon 1961)

Vegetation patterns related to parent-material differences are extensive and therefore important to global- and regional-scale modelling efforts. There is a rich literature describing the peculiarities of foras and vegetation on carbonate and ultramafic rocks, saline soils, and fine- vs. coarse-textured soils in the Arctic and sub-Arctic (see for example, Edlund 1982a; Elvebakk 1982; Cooper 1986; Edlund & Alt 1989; Walker & Everett 1991). Unfortunately, the effects of parent material on Arctic
vegetation have rarely been mapped. A notable exception is Edlund’s (1990) map of the Queen Elizabeth Islands in the Canadian Archipelago. Limestone and dolomite deposits in this region are highly alkaline and coarse textured and support sparsely vegetated barrens (Edlund 1982a,b; Edlund & Alt 1989). Edlund’s map portrays the differences of vegetation on acidic and alkaline substrates. *Luzula*-dominated communities occur in the acidic areas and *Dryas, Salix, and Saxifraga oppositifolia* communities occur on the alkaline areas (Fig. 3).

In northern Alaska, extensive acidic aeolian and marine sands have vegetation types that are distinct from those on nonacidic fine-grained loess deposits (Walker & Everett 1991; Muller et al. 1999). Walker et al. (1998) compared ecosystem properties and processes on adjacent acidic and nonacidic tundras in northern Alaska (Table 3). The nonacidic tundra had 28% greater heat flux, half the primary production, 70% less net CO2 uptake, about half the organic horizon thickness, half the shrub biomass, 30% lower leaf-area indices, 50% deeper active layers, and 15% of the methane flux. These differences are in many cases greater than the changes that could be expected from a change in subzone designation. In northern Alaska, alkaline areas of subzone 3 have many ecosystem properties similar to those of zonal sites in subzone 2. Substrate can thus essentially modify the zonal boundaries, in a fashion similar to that described from taiga regions of Russia (Isachenko 1973).

Glacial history and landscape evolution also strongly affect substrate chemistry and ecosystem properties. In northern Alaska, older landscapes have lower soil pH, poorer nutrient regimes, shallower permafrost tables, wetter soils, lower biodiversity, and greater NDVI than younger landscapes (Walker et al. 1995).

Currently, it is difficult to treat these differences globally. As noted above and by numerous other authors, some of the most important vegetation effects are related to substrate pH. A simple break separating nonacidic and acidic parent materials can be carried out in most regions of the Arctic using available soil and surface-geology maps in a GIS context (Walker 1999). Other parent-material subdivisions could be made for global mapping if they were found to be regionally extensive and important to ecosystem processes.

Topographic influences: hill-slope gradients

Within each of the above subzones, altitudinal belts and areas of different parent material, relief features of various sizes occur. Differences in sharpness of relief and direction of slope exposure associated with these features operate to influence soil drainage, soil depth, surface insolation, snow depth and duration, wind velocity and other environmental phenomena. In turn, these environmental phenomena exert a segregating action on

the available biota resulting in vegetation patterns that are strongly relief-correlated. (Cantlon 1961)

At landscape scales (1–100 km²), soil moisture has an overwhelming influence on soil development, patterns of tundra plant communities, and tundra ecosystem processes (Zoltai & Pettapiece 1973; Webber 1978; Reynolds et al. 1996). This is largely an effect of topography and can be portrayed along hill-slopes as a mesotopographic gradient (Billings 1973) (Fig. 4). Principal landforms—plains, hills, mountains, and tablelands—form first-level geological divisions (Bailey 1996). The vegetation within these divisions is primarily a function of drainage and soil-moisture regime. For example, in northern Alaska, the plains are mainly wet; the hills moist, and the mountains dry. These same changes can be seen at microscales, where small differences of a few centimetres of elevation above or below the water table can influence the plant community composition and function dramatically. In flat areas, such as flat coastal plains or broad river deltas, the influence of microtopography associated with patterned ground features, such as ice-wedge polygons is predominant.

Geochemical migration of elements down slopes is an important influence along mesotopographic gradients. The cold wet soils of the Arctic severely constrain decomposition and nutrient mineralization and availability of nutrients to plants (Chapin et al. 1980; Nadelhoffer et al. 1997). Areas that have high nutrient flux, such as along streams, water tracks, bird cliffs, or animal dens, often exhibit strikingly different plant growth and structure to zonal tundra habitats (Walker 1987; Chapin et al. 1988; Odasz 1994). Snow distribution is controlled largely by wind and mesotopographic features and has a wide variety of ecosystem influences, including effects on soil moisture, soil chemistry, growing-season length, soil temperatures, and subnivian animal activity (Walker et al. 1999). There are important differences between the well-drained, early melting portion of snow beds and poorly drained, late-melting portions (Razzhivin 1994). Streams and snow beds occupy large components of most Arctic landscapes, and any realistic portrayal of landscape variation associated with hill slopes should include dry, mesic, wet, snowbed and streamside habitats (Fig. 4).

Relevance to Arctic vegetation mapping

Currently, there is no map of any detail that portrays the vegetation of the whole Arctic. Such a map is needed for a wide variety of purposes, including modelling efforts to predict the consequences of climate change. A circumpolar Arctic vegetation map is currently in progress (Walker 1995). An integrated mapping procedure will incorporate climate, parent-material, and topography information in a unified legend approach (Walker 1999). A hierarchical legend framework based on climate, parent material, and topography is presented here using northern Alaska as an example (Table 4). The table shows the dominant plant communities occurring in the five habitats of the mesotopographic gradient on acidic and nonacidic substrates, within subzones 2, 3 and 4 of the Northern Alaska Subprovince (Yurtsev 1994). Similar tables could be constructed for each subzone-subprovince combination within the Tundra zone. An important element of Table 4 is that each plant community has a two-species name that includes the publication where the community is described. Plant communities that are only described locally are given ‘plant community type’ (communication) designations. Those that have ‘association’ (suffix ‘etum’) names have been compared globally to types described from other areas and have been incorporated into the Braun-Blanquet

<table>
<thead>
<tr>
<th>Ecosystem property</th>
<th>MNT</th>
<th>MAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH of top mineral horizon</td>
<td>7.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Average vascular plant species richness (no.)</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Average height of plant canopy (cm)</td>
<td>3.9</td>
<td>6.5</td>
</tr>
<tr>
<td>Leaf area index (m² m⁻²)</td>
<td>0.57</td>
<td>0.81</td>
</tr>
<tr>
<td>NDVI</td>
<td>0.28</td>
<td>0.41</td>
</tr>
<tr>
<td>Cover of nonsorted circles (%)</td>
<td>36.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Soil heat flux (19–29 Jun 1995, MJ m⁻² d⁻¹)</td>
<td>1.39</td>
<td>1.09</td>
</tr>
<tr>
<td>Maximum thaw depth (1995, cm)</td>
<td>57</td>
<td>37</td>
</tr>
<tr>
<td>Moss cover (%)</td>
<td>65</td>
<td>79</td>
</tr>
<tr>
<td>Net CO₂ uptake (1996, mgCO₂-C m⁻² season⁻¹)</td>
<td>3.3</td>
<td>55.2</td>
</tr>
<tr>
<td>Evapotranspiration (19–29 Jun 1995, mm d⁻¹)</td>
<td>1.06</td>
<td>1.16</td>
</tr>
<tr>
<td>Methane emission³ (mg cm⁻² y⁻¹)</td>
<td>69</td>
<td>449</td>
</tr>
<tr>
<td>Soil organic carbon to 1 m depth (kg C m⁻³)</td>
<td>40</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 3 Ecosystem properties of moist nonacidic tundra (MNT) and moist acidic tundra (MAT). Unless otherwise noted, most values are from two sites on either side of a soil pH boundary in the Arctic Foothills Alaska, measured in 1995. Climate on either side of the boundary was nearly identical. (Based on Walker et al. 1998.)
syntaxonomic nomenclature system (Westhoff & van der Maarel 1978). The European phytosociological approach has a long history in the European Arctic, whereas North Americans have traditionally favoured a gradient approach using informal or individual classification systems (Walker et al. 1994a). The European approach has many advantages as an international classification system at the plant-community level because of its well-established procedures, long history, and wide application throughout the Arctic (e.g. Thannheiser 1988; Daniëls 1994; Elvebakk 1994; Walker et al. 1994a; Dierssen 1996; Matveyeva 1998).

Relevance to global modelling efforts

Many current approaches to modelling vegetation response to climate change use plant functional types (PFTs) to group the multitude of plant species into more manageable groups of plants that are considered important with respect to ecosystem function (Solomon & Shugart 1993; Box 1996; Noble & Gitay 1996; Woodward & Cramer 1996; Smith et al. 1997). Simple mathematical step functions can then be parameterized such that a bioclimatic ‘envelope’ describes the range of climatic conditions under which a group can survive (Cramer 1997). Under modelled climate-change scenarios, these PFT groups can then form different assemblages that can be interpreted as resembling vegetation types. This approach is a compromise between the now-outdated assumption that climate change will cause wholesale shifts in vegetation types corresponding to current bioclimatic relationships and the assumption that it is necessary to model the response of all key plant species so that they respond individually to climate. The PFT categories can be based on a variety of plant characteristics, including growth forms, life forms, taxonomic groups, or other characteristics depending on the application. Several authors have discussed PFTs and growth forms specific to the Arctic (Webber 1978; Komárková & McKendrick 1988; Cramer & Leemans 1993; Hobbie et al. 1993; Chapin et al. 1996; Cramer 1997; Shaver et al. 1997). Figure 5 provides a key to the PFTs that several Arctic vegetation ecologists have arrived at through various workshops in response to the needs of global vegetation modelers. This group of PFTs is modified from a list of Arctic tundra vascular plant growth forms (Komárková & McKendrick 1988). These 14 PFTs plus barrens are extensive and potentially useful for global modelling efforts to predict vegetation change to the zonal types. Table 5 contains a first approximation of the dominant PFTs in major habitat classes within each subzone. Some modelling approaches may desire a shorter list of PFTs, which could be developed by reference to Fig. 5. The table is currently developed only for nonacidic substrates in subzones 1, 2 and 3, and acidic substrates in subzone 4.

Conclusions

More detailed land-cover maps of the tundra regions are needed to portray the large differences in ecosystems that occur across approximately 30° of latitude and 10° differences in mean July temperature. At the coarsest global scale, with pixel sizes of 0.5° × 0.5°, four subzones are perhaps sufficient for most modelling considerations. These subzones portray the major transitions on mesic (zonal) sites, from the coldest barren portions of the Arctic to relatively warm lush shrub tundra near treeline. They are named according to changes in the stature of the woody plants on zonal sites. The subzones could be subdivided further to portray more subtle changes related to variation within intrazonal sites, such as wetlands, snow beds, and streamside areas.

Within the subzones, parent-material chemistry is much more significant than is generally realized. A simple division is used here that shows the contrasts between acidic and nonacidic soils. The framework presented in Table 4 could be expanded to include other geological substrates if they were found to be regionally extensive and important to ecosystem processes.
Table 4 Dominant plant communities occurring in major habitats along the mesotopographic gradient on acidic and nonacidic substrates in subzones 2, 3 and 4 of the Northern Alaska Floristic Subprovince. Subzone 1 is missing in northern Alaska. The break between acidic and nonacidic soils is approximately pH 5.5

<table>
<thead>
<tr>
<th>Habitat along mesotopographic gradient</th>
<th>Subzone 2</th>
<th>Subzone 3</th>
<th>Subzone 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acidic substrates (Barrow)</td>
<td>Nonacidic substrates (Prudhoe Bay, coast)</td>
<td>Acidic substrates (Atqasuk)</td>
</tr>
</tbody>
</table>

Habitat along Subzone 2

<table>
<thead>
<tr>
<th>mesotopographic gradient</th>
<th>Acidic substrates (Barrow)</th>
<th>Nonacidic substrates (Prudhoe Bay, coast)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sphagnum lenense–Salix fuscescens comm. (Walker & Walker 1996)</td>
<td></td>
</tr>
<tr>
<td>Snow beds</td>
<td>Carici microchaetae – Cassiope tetragona comm. (Walker et al. 1994b)</td>
<td>Dryas integrifolia–Cassiope tetragona comm. (Walker et al. 1994b)</td>
</tr>
<tr>
<td>Streamsides</td>
<td>Valeriano capitatae–Salicetum planifolae ass. prov. (Schikoff, in prep.)</td>
<td>Epilobio latifolii–Salicetum alaxensis ass. prov. (active floodplains)</td>
</tr>
<tr>
<td></td>
<td>(=Eriophorum angustifolium–Salix purchræ comm. (Walker et al. 1994b)</td>
<td>*Salix glauco–richardsonii ass. prov. (stable floodplains)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Surface deposits at the representative sites: Barrow, Acidic marine sands and gravels; Prudhoe Bay (coast), calcareous glacial outwash; Atqasuk, acidic eolian sands; Prudhoe Bay (inland), calcareous loess; Innnavait Creek, acidic mid-Pleistocene glacial till; Toolik Lake, calcareous late-Pleistocene glacial till.

Table 4 Continued

Fig. 5 Key to plant functional types for tundra ecosystems.

At landscape scales, soil-moisture and snow gradients are predominant. A five-habitat mesotopographic gradient is useful to portray the principal components of most Arctic landscapes. This includes dry, mesic (zonal), wet, snowbed, and streamside environments.

The forthcoming circumpolar Arctic vegetation map will take into consideration climate, parent material and topographic factors. The example hierarchical legend presented in Table 4 will be extended to other floristic subprovinces based on the literature and expert knowl-
edge from these regions. The compiled list of dominant plant communities within each climatic subzone, parent material type, and major habitat type will provide concrete information for a wide variety of users including climate-change modellers.

Acknowledgements

Thanks to the members of the Circumpolar Arctic Vegetation Mapping (CAVM) project, the participants of the Extrapolation of Arctic and Boreal Processes that Feedback to Climate Workshop in Santa Barbara, CA, participants at the Climate Change and Arctic Biomes: Structure, Function, and Modelling Workshop in Potsdam, Germany, and members of the 1999 Canadian CAVM Transect. Funding were provided by the National Science Foundation (OPP-9214959, 9732076).

References

Brattbakk I (1986) Vegetation Regions—Svalbard and Jan Mayen, Map 1:1,000,000 scale. Norsk Polarinstitutt/MAB

Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J

© 2000 Blackwell Science Ltd, Global Change Biology, 6 (Suppl. 1), 19–34

Table 5 Plant functional types (PFTs) for modelling vegetation in the four tundra subzones and five major habitats. Underlined PFTs are dominant and a suggested minimum for global and regional modelling efforts

<table>
<thead>
<tr>
<th>Subzone Habitat</th>
<th>Dry, wind swept (zonal)</th>
<th>Mesic (zonal)</th>
<th>Snowbed (early melting, well-drained)</th>
<th>Wet (non-emergent)</th>
<th>Streamside (stable sites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cushion-forb</td>
<td>b, cf, of, g</td>
<td>b, g, r, cf, of, ol, c (>95% barren or lichen covered)</td>
<td>b, g, of, c</td>
<td>nb, g</td>
<td>b, g, cf</td>
</tr>
<tr>
<td>2. Prostrate dwarf shrub</td>
<td>b, npds, ns, dpds, cf, of, ol</td>
<td>npds, dpds, b, ns, cf, of, ol (50–95% barren or lichen covered)</td>
<td>npds, dpds, nb, ol</td>
<td>ns, nb, dpds, of</td>
<td>npds, dpds, ns, cf, of, nb</td>
</tr>
<tr>
<td>3. Erect dwarf shrub</td>
<td>npds, dpds, b, ns, npds, dpds, deds, deds, ns, cf, of, ol, b (20–50% barren)</td>
<td>npds, dpds, nb, ol</td>
<td>ns, nb, dpds, of</td>
<td>deds, npds, dpds, of, ns, nb</td>
<td>deds, npds, dpds, of, ns, ns, cb, dpds, of</td>
</tr>
<tr>
<td>4. Low shrub</td>
<td>dpds, npds, g, ol</td>
<td>dl, ts*, ns, deds, reds, sb, nb, rl, ol (<20% barren)</td>
<td>npds, dpds, nb, ol</td>
<td>ns, sb, nb, dpds, ol</td>
<td>dl, npds, deds, npds, dpds, nb, of</td>
</tr>
</tbody>
</table>

*In Beringia.

PFT codes: b, barren; cf, cushion or rosette forb; deds, deciduous erect dwarf shrub; dls, deciduous low shrub; dpds, deciduous prostrate dwarf shrub; g, grass; nb, nonsphagnoid bryophyte; neds, nondeciduous erect dwarf shrub; npds, nondeciduous prostrate dwarf shrub; ns, nontussock sedge; of, other forb; ol, other lichen; r, rush; rl, reindeer lichen; sb, sphagnoid bryophyte; ts, tussock sedge. Parent material conditions are assumed to be nonacidic in subzones 1–3 and acidic in subzone 4.

Lavrenko EM, Sochava VB (1954) *Geobotanicheskaya karta SSSR*, m 1:4,000,000 [Geobotanical map of the USSR, 1:4,000,000 scale].

Sorensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. *Meddelelser Om Grønland, Biologisk Serie, 125*, 1–315.

