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HISTORY AND PATTERN OF DISTURBANCE IN 
ALASKAN ARCTIC TERRESTRIAL ECOSYSTEMS: 
A HIERARCHICAL APPROACH TO ANALYSING 

LANDSCAPE CHANGE 

BY DONALD A. WALKER AND MARILYN D. WALKER 
Joint Facility for Regional Ecosystem Analysis, Institute of Arctic and Alpine 

Research, University of Colorado, Boulder, CO 80309, USA 

SUMMARY 
(1) The history, types, and scales of disturbance in Arctic Alaska are reviewed and 

disturbances organized according to the spatial and temporal domains of Delcourt, 
Delcourt and Webb. This system is also used as a framework for a regional 
hierarchical geographic information system (GIS). 

(2) Natural disturbances vary from frequent small disturbances, such as needle-ice 
formation, to infrequent large disturbances, such as major glaciations. Most natural 
disturbances are either directly or indirectly climatically driven and are affected by 
climate changes, particularly changes to hydrologic regimes. The latter could be 
influenced by changes in either summer or winter precipitation patterns; increased 
temperature, which would melt ground i. e; or changes in vegetation, which would 
affect evapotranspiration and run-off. 

(3) Most anthropogenic disturbances are microscale (10-1 to 106 M2) phenomena, 
but cumulative impacts associated with large developments, such as the Prudhoe Bay 
Oil Field, have affected mesoscale regions (106_1010 M2), and global warming could 
affect the tundra ecosystem at the macroscale level (1010_ 1012 M2). 

(4) In the Arctic, recovery of the vegetation following disturbance is particularly 
closely linked to recovery of the physical system because of the presence of ice-rich 
permafrost. Maps of terrain sensitivity to disturbance must consider the influence of 
ground ice and heat flux to the system following disturbance. 

(5) A three-tiered GIS hierarchy with five sublevels is presented, with examples of 
typical scientific questions being addressed at each level, scales and types of databases, 
and linking elements between levels. 

(6) At the regional (macroscale and mesoscale) levels, the primary data sources 
are satellite-derived digital data. At the site level, integrated geobotanical databases 
derived from field surveys and photointerpretation are used in combination with 
digital terrain models. At the most detailed (plot or microsite) level, point sampling 
is used to portray vegetation structure and species composition in 1-M2 plots. 

(7) Linking or 'scaling-up' elements that affect landscape patterns at all scales are 
hydrology, geochemistry, and primary production. 

INTRODUCTION 

Historically, most disturbance and recovery research in tundra regions has been at 
the plot level, but concerns about cumulative impacts of large oil fields and the 
possible effects of climate change have caused ecologists to search for tools to 
examine impact over large areas and to 'scale up' plot- and watershed-level investi- 
gations to broader regions. Recent developments in the fields of landscape ecology, 
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geographic information systems (GISs), remote sensing, and hierarchy theory are 
beginning to provide the means to accomplish this task. There is a need for a 
common conceptual framework to compare scales of disturbances and to help organize 
our thinking regarding the great diversity of disturbances operating at widely ranging 
scales and to select appropriate spatial analytical tools. 

In this paper, we use the Delcourt, Delcourt and Webb (DDW) (Delcourt, 
Delcourt & Webb 1983; Delcourt & Delcourt 1988) system of spatial and temporal 
domains to examine natural and anthropogenic disturbances on the Alaskan North 
Slope. We also use the system as a framework for a regional hierarchical GIS. We 
first present an overview of history, types, and scales of disturbance in northern 
Alaska and place natural and anthropogenic disturbances within the context of the 
DDW domains. Much of the tundra disturbance-and-recovery information is in so- 
called 'grey' literature generated by government agencies and private consulting 
firms. We therefore restrict this review to Alaska, and even here we selected only 
key references for some topics. We then present a hierarchical GIS for the North 
Slope with details regarding scales, topics of investigation, and examples of databases at 
each scale. 

DISTURBANCE AND RECOVERY RESEARCH IN NORTHERN 
ALASKA 

History of research 

The discovery of oil at Prudhoe Bay in 1968 and the National Environmental 
Policy Act in 1970 marked the beginning of an era of unprecedented environmental 
research in the Arctic. This was a response to increased public awareness of the 
consequences of unbridled development, and a recognition by industry and govern- 
ment of the need for sound environmental information to minimize impacts and to 
protect themselves during legal challenges. Some of the most prominent research 
programmes were the Atomic Energy Commission (AEC) research at Cape Thompson 
in the 1960s (Wilimovsky & Wolfe 1966), the International Biological Programme 
(IBP) research at Barrow (Tieszen 1978; Brown et al. 1980) and Prudhoe Bay 
(Walker et al. 1980), the U.S. Army Cold Regions Research and Engineering 
Laboratory (CRREL) research along the Dalton Highway (Brown & Berg 1980) and 
the National Petroleum Reserve-Alaska (NPR-A) (Lawson et al. 1978; Lawson 
1982), the Research in Arctic Tundra Environments (RATE) programme at Atkasook 
and Toolik Lake (Batzli 1980), the environmental monitoring and revegetation 
studies sponsored by Alyeska and the oil industry (e.g. U.S. Army Corps of Engineers 
1983; Johnson 1984; Gallaway & Johnson 1985; Dames & Moore Inc. 1986; 
Densmore et al. 1987; Jorgenson 1988a, b), the monitoring sponsored by the U.S. 
Geological Survey in the National Petroleum Reserve-Alaska (NPR-A) (Tetra 
Tech 1983; Gryc 1985), environmental research in the '1002 Area' of the Arctic 
National Wildlife Refuge (Clough, Patton & Christiansen 1987), and the Department 
of Energy's R4D Program (Response, Resistance, Resilience to, and Recovery from 
Disturbance in Arctic Ecosystems) (Oechel 1989). Much of this work has been 
reviewed by Walker et al. (1987a). 
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Definitions 

Here we use the term disturbance in the sense proposed by Pickett et al. (1989): 
'Disturbance is a change to the minimal structure [of a system] caused by a factor 
external to the level of interest.' In our treatment, the system of interest is ecosystem 
spatial pattern at all scales. The minimal structure is the pattern of plant species at 
the plot level, plant communities at the site level, or physiognomy and production at 
the regional level. Thus, glaciations and less deposition, which operate over large 
regions and long time-spans, are disturbances when viewed in terms of the entire 
history of the region, as are the microdynamics of systems associated with vole 
outbreaks and ground squirrel activity. The effects of disturbance on other hierarchical 
aspects of system structure and processes, such as energy capture by plants, resource 
partitioning, or nutrient flow (Rykiel 1985; Pickett et al. 1989), are not considered 
here, although the spatial hierarchy may also play an important role in these other 
ecological hierarchies. 

To gain insight to the factors controlling the response of the system to anthropogenic 
disturbances, it is important to understand how the vegetation evolved in concert 
with the terrain. The dynamic character of terrestrial ecosystems is a function of 
natural disturbance regimes operating over a broad range of spatial and temporal 
scales (White & Pickett 1985). Analysis of human-caused (anthropogenic) impacts in 
tundra ecosystems requires a means to compare the effects of these disturbances 
with natural ones. The distinction between natural and anthropogenic disturbances is 
made in order to clearly separate those that were part of the landscape before the 
appearance of man from those that are the results of man's activities. Most anthro- 
pogenic disturbances have natural analogues, but the scale or extent of the analogues 
may be radically different. In fact, natural and anthropogenic disturbances differ 
most in magnitude of energy input because in most cases man and Nature are 
dealing with the same materials. 

Important aspects of disturbance and recovery in permafrost regions 

The physical system 
Ice-rich permafrost is a major factor controlling disturbance and recovery in the 

Arctic. If the permafrost thaws, thermokarst (the collapse of the surface due to 
melting of massive ground ice) can be initiated on a large scale, and a critical point is 
reached where it is difficult or impossible to return the site to its original state within 
a few decades because of continued subsidence. The thawing of ground ice causes (i) 
hydrologic changes due to the impoundment of water or creation of flowing water, 
(ii) thermal changes by decreasing the albedo of the surface and increasing heat flux 
to the site, and (iii) geochemical changes, usually in the form of increased availability of 
nutrients. Three major attributes of the physical system contribute to thermokarst in 
permafrost regions: (i) volume of ground-ice in the near surface sediments, (ii) 
steepness of the terrain, and (iii) grain size of the sediments (Lawson 1986). Disturb- 
ances in areas with high amounts of ground ice, rolling topography, and fine-grained 
sediments may not stabilize even 30 years after the disturbance. The grain-size and 
steepness of the terrain can normally be determined from surficial geology maps and 
digital terrain models (DTMs). Currently, the volume of ground ice can only be 
determined by coring the subsurface sediments. However, statistical probabilities 
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can be used to predict ground-ice content based on numerous other factors, such as 
terrain age, type of surficial deposit, vegetation mantle, microtopography, slope 
position, and aspect (Kreig & Reger 1976, 1982). 

Modification of the site following disturbance can follow a variety of pathways 
eventually returning the site to thermal equilibrium. If heat flux to ice-rich terrain is 
increased by any of a variety of means, such as changes in surface albedo, hydrologic 
conditions, thermal conductivity of the active layer, snow regime, or local sources of 
heat, thermokarst is the likely result. The controls on heat flux are complex. The 
radiation balance and thermal properties of the soil are affected by topographic 
position (slope and aspect), depth of the moss carpet, bulk density of the soil, 
vegetation cover, snow cover, and moisture regimes (Weller & Holmgren 1974; 
Smith 1975; Pavlov 1978; Jorgenson 1986). Deep organic layers and thick moss 
carpets are good insulators against heat flux unless the organic material is saturated, 
as is often the case in low microsites. Physically based models of heat flux now offer 
predictions of changes to annual thaw depth in response to climate change (Kane, 
Hinzman & Zarling, in press; Hinzman et al., in press). The thermal stability of the 
site constrains the time required for vegetation recovery and the type of vegetation 
that will reoccupy the site. Perhaps nowhere on earth is the synergistic link between 
physical stability of the substrate and vegetation recovery more evident than in 
permafrost regions. 

Vegetation recovery 
The possible outcomes of vegetation recovery following disturbance are dependent 

on a large number of factors, many of which are related to the initial physical 
characteristics of the site discussed above. Important factors include the composition 
of the original vegetation (Komairkova', Ebersole & Webber 1987); presence or 
absence and depth of snow cover at the time of disturbance (Felix & Raynolds 
1989a); the type, frequency and severity of disturbance (e.g. Abele 1976; Rickard & 
Brown 1974; Walker et al. 1977, 1978); moisture and biogeochemical regime of the 
site (Chapin & Van Cleve 1981; Chapin, Vitousek & Van Cleve 1986; Chapin et al. 
1987, 1988; Everett, Marion & Kane 1989; Kane, Hinzman & Zarling, in press; 
Marion & Everett 1989; Oberbauer et al. 1989); temperature regime of the site 
(Bliss 1962; Billings & Mooney 1968; Savile 1972; Chapin, Van Cleve & Chapin 
1979; Chapin 1983a; Shaver, Chapin & Gartner 1986; Shaver 1987); buried seed 
bank (Chester & Shaver 1982; Gartner, Chapin & Shaver 1983; Shaver & Gartner 
1987; Ebersole 1989), availability of native seed (Cargill & Chapin 1987); nature of 
revegetation efforts (Densmore et al. 1987; Densmore & Holmes 1987; Johnson, 
Shaver & Gartner 1987); and natural successional processes (Bliss & Cantlon 1957; 
Billings & Peterson 1980; Chapin & Chapin 1980; Shaver et al. 1983; Kershaw & 
Kershaw 1987; Svoboda & Henry 1987). All of these factors contribute to the 
resistance and resilience of the vegetation and the possible outcomes of the recovery 
process. [Resistance is the property of a system to withstand disturbance without 
changing its initial state, and resilience is the characteristic of a system to return 
toward the original state once a change has occurred (Holling 1978; Vitousek et al. 
1981)]. Disturbance in general creates surfaces with warmer soils, lower organic 
matter, and higher nutrient regimes (Dowding et al. 1981; Ebersole 1985; Chapin 
et al. 1988; Komairkova' & McKendrick 1988). 

The native vegetation type is the most telling factor for predicting response to 
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disturbance because it is an integrated expression of the system's reaction to existing 
site factors, including temperature, nutrients, exposure to wind, snow cover, and 
natural disturbance regimes (Braun-Blanquet 1932; Major 1951; Chapin et al. 1987; 
Kuchler & Zonneveld 1988). Numerous mapping systems combine vegetation, soil, 
climate, and site factors to produce integrated classifications, such as the vegetation- 
soil surveys in California (Wieslander 1935; Colwell 1977); ecological land classification 
in Canada (Rubec 1979; Rowe & Sheard 1981); geoecological maps in the discon- 
tinuous permafrost zone of Canada (Crampton & Rutter 1973); integrated terrain 
unit maps (ITUMs) developed by the Environmental Systems Research Institute 
(Dangermond, Derrenbacher & Harden 1982 unpubl.); biogeoclimatic classifications 
of the British Columbia forests (Krajina 1965; Klinka 1976; Pojar, Klinka & Meidinger 
1987); and geobotanical maps in northern Alaska (Walker et al. 1980, 1986). Carto- 
graphic models combine various portions of an integrated classification - such as 
vegetation, slope, microtopography and soil texture - to produce terrain sensitivity 
maps (Walker et al. 1980; Green et al. 1984). For example, maps of sensitivity of 
tundra to off-road vehicle traffic are based primarily on vegetation and microtop- 
ography (Slaughter et al. 1990. Some of the most easily disturbed vegetation 
types are the most resilient (Komairkova' 1983; Komairkova', Ebersole & Webber 
1987). For example, wet tundra is easily disturbed (low resistance), but it recovers 
considerably faster than mesic uplands following a disturbance by off-road vehicles 
(high resilience) (Komairkova' 1983). This characteristic is not unique to the Arctic, 
but it is closely related to the site moisture conditions and the flux of nutrients 
(Holling 1973; Chapin et al. 1988). 

In summary, although detailed investigations of succession following disturbance 
are generally lacking for most native Alaskan tundra communities, we do have a 
great deal of information regarding general patterns of resistance and resilience in 
relation to site factors to give us a starting point for models of terrain sensitivity. The 
most critical factor for these models, however, is determination of ground-ice and 
heat-flux conditions at a site. It should be possible to model these based on terrain 
variables and remotely sensed information at a variety of scales. Many basic concepts 
of disturbance and recovery in the permafrost regions have been formulated during 
the past three decades. The complexity of and close synergism between physical and 
biological factors point to the need for multivariate hierarchical databases to predict 
terrain sensitivity. 

SCALES OF DISTURBANCE 

Recent concerns regarding the consequences of global climate change have forced 
ecologists to consider tundra ecosystems at previously unmanageable scales. For 
example, the effects of feedback associated with climate change resulting from 
increased atmospheric greenhouse gases is a major concern in tundra ecosystems 
(Chapin 1983b; Prudhomme et al. 1983). An estimated 10-27% of the world's 
stored carbon is in the peat of northern ecosystems (Prudhomme et al. 1983). To 
understand the response of peat to climate change and the feedback of green- 
house gases to the atmosphere, detailed studies of biophysical processes and plant 
species dynamics need to be linked to plot-, landscape-, regional- and global-level 
investigations. 

It is difficult to deal experimentally with the variation in natural and anthropogenic 
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TABLE 1. Spatial hierarchy of Delcourt & Delcourt (1988) 

Hierarchical 
domains Sublevels Area (m2) Map scale 

1-5 X 1014 Smaller scale 
Global 

Megascale 10'l 1:20 000 000 
Continent 

1012 1:2000000 
Macroscale Macroregion 

1010 1:200000 
[Mesoregion 

Mesoscale 108 1:20 000 
Microregion 

106 1:2000 
[ Macrosite 
I 104 1:200 

Microscale Mesosite 
102 1:20 

Microsite 
100 1:2 

disturbances at widely divergent scales and across a wide range of tundra types. 
Cantlon (1961) recognized the need for a hierarchical approach to examine the 
vegetation of the North Slope nearly 30 years ago and succeeded in identifying 
micro-, meso- and macroscale factors controlling tundra vegetation patterns. More 
modern approaches have utilized the concepts of hierarchy theory (Allen & Starr 
1982; O'Neill et al. 1986; Urban, O'Neill & Shugart 1987; Rosswall, Woodmansee & 
Risser 1988). One particularly useful concept is the standardization of spatial and 
temporal scales across ecosystems (Table 1; Delcourt, Delcourt & Webb 1983; 
Delcourt & Delcourt 1988; O'Neill 1988). The DDW system is based on a logarithmic 
separation of spatial and temporal levels within the hierarchy. A similar 'G' scale has 
been suggested by geographers to scale all geographic measurements to the Earth's 
surface area (Haggett, Chorley & Stoddart 1965). The hierarchy was developed as a 
paradigm to aid communication and thinking with regard to environmental forcing 
functions, biotic responses, and patterns of organization of communities on terrestrial 
landscapes at all space and time scales (Delcourt & Delcourt 1988). 

Natural disturbances 

Successional sequences, possibly spanning thousands of years, must be considered 
in the Arctic because of the exceptionally short growing season and generally poor 
nutrient regimes (Table 2). Truly stable vegetation is non-existent and all areas are 
in a state of patchy succession. Even Eriophorum vaginatum tussock tundra, which 
at first glance appears to be a stable vegetation type covering vast areas of the North 
Slope, is composed of a closely spaced mosaic of successional plant assemblages 
mostly associated with frost scars (Johnson & Neiland 1983; Gartner, Chapin & 
Shaver 1986). 

At coarse spatial scales, landscape evolution is often not evident but occurs nearly 
everywhere at widely divergent time-scales. For example, in the Arctic Foothills, 
differences in terrain morphology and vegetation occur across glacial boundaries 
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separating late-Pleistocene (8-12 ka) surfaces from mid-Pleistocene (about 125 ka) 
surfaces (Hamilton 1986; Walker et al. 1989). On the Arctic Coastal Plain, most 
surfaces have been affected by lacustrine, eolian, and fluvial processes. Here, the 
majority of the surfaces have been influenced by the 'thaw-lake cycle', a term used 
to describe the development, growth, drainage, and re-establishment of thaw lakes, 
with a time-span estimated to be several hundred to thousands of years (Hopkins 
1949; Britton 1967; Everett 1980a; Billings & Peterson 1980). Nearly as extensive 
are braided-river systems that eventually evolve into thaw-lake plains over the 
course of several thousand years (R.I. Lewellen unpublished; Walker 1973; Rawlinson 
1983). Floodplains have affected most of the eastern portion of the coastal plain, and 
terraces of various ages have distinct patterns of vegetation. Eolian activity is another 
important disturbance; parts of the large 7000-km2 stabilized Pleistocene sand sea 
west of the Colville River are continuously being reactivated and restabilized (Black 
1951; Pewe 1975; Carter 1981; Hopkins 1982; Komairkova' & Webber 1980; Komairkova' 
& McKendrick 1988). In the northern foothills and the central and eastern portion 
of the coastal plain, modern windblown silt lesss) covers large areas (Carter 1988). 
Eolian and fluvial disturbances cover a wide range of spatial scales. The type, 
frequency, and amount of eolian deposition is strongly related to distance from the 
eolian material source (Walker & Everett, in press). Similarly, the spatial and 
temporal scales of fluvial activity are strongly related to stream size and climatic 
events such as storms and deglaciation. 

At finer scales, important natural disturbances are: the growth and erosion of ice- 
wedges (Lachenbruch 1966); tundra fires (Wein & Bliss 1973a; Wein 1976; Hall, 
Brown & Johnson 1978; Racine 1981, 1987; Racine, Patterson & Dennis 1983, 
Gabriel & Tande 1983; Johnson & Viereck 1983; Racine, Johnson & Viereck 1987); 
storm surges (Hartwell 1972; Short 1973; Barnes & Reimnitz 1974; Harper 1978; 
Hopkins & Hartz 1978; Owens, Harper & Nummedal 1980); river bank erosion 
(Lawson 1983; Walker 1983), snowbanks and associated run-off (Komairkova' & 
Webber 1978, 1980; Walker 1990); animal disturbances (Bee & Hall 1956; Wiggins 
& Thomas 1962; Pitelka 1964; 1973; Shultz 1964, 1969; Gersper et al. 1980; Batzli 
et al. 1980; Walker 1985); ground water discharge, which is responsible for features 
such as solifluction lobes, slope failures, springs, and icings (aufeis) (Washburn 
1980); the diurnal freeze-thaw cycle, which is responsible for features ranging in 
scale from frost scars to needle-ice hummocks (Washburn 1980; Gartner 1982; 
Johnson & Neiland 1983; Gartner, Chapin & Shaver 1986). 

When the information in Table 2 is plotted in log-log space with the DDW spatial 
and temporal domains as a background (Fig. 1), most natural disturbances fall along 
a diagonal, with small frequent disturbances at one end and large infrequent disturb- 
ances at the other end. This is largely a function of the log-log scale which will 
straighten out most sets of points. Exceptions to this pattern include yearly events 
with a wide range of spatial scales, such as the spring flood, which affects all active 
floodplains and deltas on the North Slope for a short time in the spring of every 
year, and less deposition, which occurs several times per year and affects large 
areas of the North Slope. The effect of less, however, is generally only noticeable 
when it accumulates over- long periods of time. 

Nearly all natural disturbances are either directly or indirectly climatically driven 
and are primarily hydrologically mediated. Most of the vegetation and geomorphic 
effects in Table 1 have a hydrologic component connected to either the melting of 
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FIG. 1. Spatial and temporal scales of natural disturbances on the North Slope, based on 
information in Table 2. Scales of various data collection methods are shown along the x- 
axis. The lower scales (left arrow) of the satellite sensors are the minimal sample area, or 
pixel size, of each sensor. The upper limit (right hand arrow) is the size of a standard image. 

ground ice or precipitation effects. Snowpack, soil moisture, and run-off patterns 
control the vast majority of vegetation patterns, primary production, and the patterns 
of animals. Only the megascale disturbances associated with continental drift and 
tectonism are not closely tied to climate and precipitation. 

Anthropogenic disturbances 

History 
Three distinct periods of modern anthropogenic disturbances have occurred on 

Alaska's North Slope: (i) the pre-World War II period, during which disturbances 
were mainly limited to activities around native villages and hunting camps; (ii) the 
World War II and early exploration period, including the building of the radar sites 
of the Distant Early Warning (DEW) system and the hydrocarbon exploration in 
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Naval Petroleum Reserve-4 (PET-4) from 1943 to 1953 (Schindler 1983; Gryc 1985, 
1988), all of which predates the era of national environmental consciousness; and 
(iii) the period starting with the discovery of oil at Prudhoe Bay in 1968 to the 
present. The disturbances discussed in this study are related primarily to oil exploration 
of the 1940s to the present. 

Many disturbances are still visible from the earliest period of oil exploration when 
tracked vehicles were used to transport seismic and drilling equipment during the 
summer across the tundra. During the exploration of PET-4 (1944-53) and the 
exploration of the central coastal plain and the foothills during the 1950s, trails were 
often bulldozed across the tundra during both summer and winter (Reed 1958). 
Drilling sites were locations of a wide variety of disturbances (Lawson et al. 1978; 
Lawson 1982; Ebersole 1987). The most long-lasting effects were subsidence due to 
thermokarst, and debris such as construction materials, oil drums, and small hydro- 
carbon spills. Most of these have recently been cleaned up by the U.S. Geological 
Survey and the U.S. Navy (Gryc 1985). Investigations regarding long-term (30-year) 
recovery of vegetation and terrain have been conducted at Fish Creek Test Well 1 
(Lawson et al. 1978), Oumalik (Ebersole 1985), East Oumalik (Lawson 1982), and 
Cape Thompson (Everett et al. 1983). 

During the most recent period of oil exploration, there has been a heightening of 
environmental concern and the development of techniques to minimize disturbance 
to the tundra, but we have concurrently seen an increase in the size of areas 
affected. Large oil fields and long pipelines create fundamentally different ecological 
concerns than those resulting from the early oil exploration. Past disturbances were 
not as frequent, as intense, nor as large as those of today. Concerns over water 
pollution (West & Snyder-Conn 1987), air pollution, disposal of hazardous waste 
(Speer & Libenson 1988), and cumulative impacts to wildlife and the landscape 
(Shideler 1986; Walker et al. 1987b) have added to engineering concerns about how 
to construct thaw-stable roads, pipelines, and buildings in a permafrost environment. 
Some of the most difficult questions are those regarding land-use planning of vast 
pristine landscapes, where to locate facilities in these landscapes, and which areas 
should be protected from all development. 

Types of anthropogenic disturbance 
The complexity of modern oil fields, such as the Prudhoe Bay oil field, makes 

summary statements regarding their environmental impact difficult. Walker et al. 
(1987a) reviewed most of the available literature on the impacts of permanent 
structures, such as roads, pipelines, powerlines, airstrips, and gravel pads. Most 
research has focused on the effects of roads, including the elimination of habitat 
beneath roads (Walker et al. 1987b), road dust (Everett 1980b; Werbe 1980; Spatt & 
Miller 1981; Klinger, Walker & Webber 1983; Walker & Everett 1987; Meininger & 
Spatt 1988), shorebird habitat (Meehan 1986; Troy 1988), waterfowl (Murphy et al. 
1989) roadside erosion and thermokarst (Berg 1980; Walker & Everett 1987), im- 
poundments (Klinger, Walker & Webber 1983), the effect of roads on caribou 
(Cameron 1983; Robus & Curatolo 1983; Smith & Cameron 1985; Shideler 1986; 
Curatolo & Reges 1986), roadside snowbanks and early snowmelt due to the low 
albedo of dust-covered snow (Benson et al. 1975; Klinger, Walker & Webber 1983), 
the migration of weeds along transportation corridors (Johnson & Kubanis 1980 
(unpubl.); Kubanis 1980), and revegetation of abandoned roads, gravel pads and 
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material sites (Brown & Berg 1980; Johnson 1981; Johnson 1987, Johnson, Shaver 
& Gartner 1987; Densmore et al. 1987; Jorgenson 1988a, b). 

Disturbances not associated with permanent structures include terrestrial oil spills 
(McCown et al. 1973; Wein & Bliss 1973b; Deneke et al. 1975; Mackay & Mohtadi 
1975; Freedman & Hutchinson 1976; McGill 1977; Everett 1978; Arctic, 31 (3), 
1978; Johnson et al. 1980; Linkins et al. 1984; Holt 1987; McKendrick 1987); salt- 
water contamination associated with waterflood pipelines (Simmon et al. 1983), 
sewage lagoons and reserve pit fluids (French 1985; West & Snyder-Conn 1987; 
Myers & Barker 1984); off-road vehicles (Abele & Parrott 1972; Abele et al. 1978; 
Walker et al. 1977; Challinor & Gersper 1975; Gersper & Challinor 1975; Chapin & 
Shaver 1981; Abele, Brown & Brewer 1984; Linkins et al. 1984; Racine & Johnson 
1988; Slaughter et al. 1990); winter trails and ice-roads (Buttrick 1973; Gas Arctic- 
Northwest Project Study Group 1973; Adam 1974; Adam & Hernandez 1977; 
Racine 1977; Brown & Berg 1980; Johnson & Collins 1980); and seismic trails (P.C. 
Reynolds, unpublished; Geophysical Services Inc. 1984; Felix & Raynolds 1989a, b). 

Scales of anthropogenic disturbances 
As with natural disturbances, it is often difficult to determine what is a discrete 

anthropogenic disturbance event. For example, an oilfield is an accumulation of 
many smaller disturbances, but when considered over the time-span of decades to 
centuries, it becomes a single disturbance. Similarly, in the case of road dust, the 
passage of a single truck with its associated dust plume is a discrete disturbance, but 
the effects are hardly noticeable until the accumulated dust of many years is considered. 
Estimates of the spatial scale of disturbances and their times of recovery (Table 3, 
Fig. 2) are based, as much as possible, on the literature discussed above. Generally, 
the lower limits of the spatial scales are determined by the smallest area that would 
be considered a discrete example of the disturbance, such as a single piece of trash 
(10-1 M2), a 100-m-wide swath of dust adjacent to a 1-km-long road (105 M2), a 
single small roadside impoundment (102 M2), a small native village or drill site 
(104 M2), and a small oilfield consisting of two gravel pads and a connecting road 
(105 M2). The minimum area for the effects of climate change due to increased 
greenhouse gases was considered to be a small vegetation community (102 M2). 

The upper limits of the spatial scales were based on the largest known examples 
on the North Slope, such as the 100-m dust swath along the 290-km North Slope 
portion of the Dalton Highway (107 M2), the estimated total area of Prudhoe Bay 
oilfield disturbances based on Walker et al. (1987b) (108 M2), and the 1977 Franklin 
Bluffs oil spill (105 M2). The upper limit for ORV and seismic trails was considered 
to be 50 km with a disturbed width of 2 m for ORVs and 20 m for seismic trails. The 
maximum geographic entity that would be affected by a climate change was considered 
to be the entire North Slope (1011 M2). 

Recovery times are also based on literature and knowledge of succession in 
natural ecosystems of northern Alaska. Lower limits of recovery are in most cases 
1 year or less. Major impacts, such as roads, gravel pads, villages, and drained thaw- 
lakes, require extended periods of succession, usually exceeding 100 years. Full 
recovery is not likely to occur on some disturbances, such as roads, pads, and many 
material sites; so length of time to achieve functional recovery is used. Functional 
recovery is the process leading to a stable functional ecosystem that is different from 
the original (Walker et al. 1987a). Oilfields, gravel mines, and roads are considered 
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FIG. 2. Spatial scales and estimated recovery time for anthropogenic disturbances on the 
North Slope, based on information in Table 3. 

comparable to fresh glacial outwash with the exception that the till has a higher 
proportion of fine soil particle sizes (<2 mm diameter), and therefore, succession 
pattern and rates will be somewhat different due to better nutrient and water 
retention. Recovery to a condition similar to Itkillik-age till is estimated to be at 
least i04 years. Recovery from a major climate change conceivably could be equivalent 
to that of a major glaciation (1O5 years). 

The following summary is based on Table 2 and the log-log plot of its information 
(Fig. 2). (i) All the disturbances of the early years of native villages, DEW-line 
stations, and oil exploration,- as well as most modern disturbances, are microscale- 
level phenomena. (ii) Mesoscale events are associated only with large oilfields and 
extended transportation corridors. (iii) Road dust is a mesoscale phenomenon when 
considered over the entire North Slope portion of the Dalton Highway. (iv) Landscape 
change associated with major anthropogenic climate shift could have macroscale 
effects. 
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NORTH SLOPE GIS HIERARCHY 

A hierarchical geographic information system (GIS) is currently under development 
for the North Slope. The purpose is to organize data at appropriate scales for 
addressing scientific questions related to energy development and climate change. 
One goal is the development of a series of spatial models that predict response of 
vegetation and landscapes to disturbances at several scales. The DDW spatial domains 
are the conceptual framework for the GIS. Models utilizing the GIS to portray 
nutrient and soil-water movement along slopes and through watersheds in permafrost 
regions are being developed at San Diego State University as part of the U.S. 
Department of Energy's 'Response, Resistance, Resilience to, and Recovery from 
Disturbance in Arctic Ecosystems' (R4D) programme, and at the Marine Biological 
Laboratory at Woods Hole as part of the National Science Foundation's Long-Term 
Ecological Research (LTER) programme. To date, most of the research has focused 
on detailed descriptions of the geobotany (Walker et al. 1989; Stow, Burns & Hope 
1989) and application of the GIS to the analysis of the spatial relationships between 
terrain, snow distribution, and vegetation (Evans et al. 1989). 

Scales and topics of investigation 

The GIS consists of three primary tiers that correspond to the macroscale, mesoscale, 
and microscale domains of the DDW hierarchy (Table 1, Fig. 3). Databases are 
currently being constructed at five sublevels of the hierarchy (macroregion, mesore- 
gion, microregion, macrosite, and microsite). 

The scale of various spatial data gathering systems used for the GIS are shown 
along the x-axis in Figs 1 and 2. For example, we use point-sampling techniques for a 
wide variety of microscale studies, such as thaw-depth, snow-depth, and soil properties. 
Of course, point sampling is also used at much broader scales, but often it is not 
possible to make statistically sound extrapolations based on these samples. Photo- 
interpreted geobotanical maps based on extensive ground surveys are being produced 
at mesosite to microregion scales. Again, photointerpreted maps are made of larger 
areas, but for the North Slope studies, they are currently restricted to microregion 
areas or smaller because of the labour involved in making accurate maps of larger 
areas. Satellite digital data are used for most regional studies (Figs 1 and 2). 
Although each sensor can be used for studies at a wide variety of scales, the scales at 
which the sensors are most appropriately used within the context of the hierarchical 
GIS are discussed below. 

Regional level 
Regional studies involve questions related to areas greater than 1 km2. Specific 

scientific questions being investigated at the regional level are: (i) What are the 
large-scale and long-term patterns of vegetation succession and accumulation of peat 
and carbon on different-aged landscapes in the Arctic? (ii) What is the influence of 
modern less on large-scale vegetation patterns? (iii) How do the patterns associated 
with landscape age and less influence hydrology and stream- and lake-chemistry 
from water tracks to major river systems? (iv) How does primary production respond to 
the existing temperature and precipitation gradients associated with the Beaufort 
Sea and the Brooks Range? (v) Can these climatic gradients be used as appropriate 
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analogs for future climate change? The regional level includes macroscale and 
mesoscale databases. 

Macroscale (104_106 km2) 
Macroscale (macroregion) databases involve physiographic provinces up to the 

entire North Slope (Fig. 4). The primary data source at this scale is digital information 
from the Advanced Very High Resolution Radiometers (AVHRR) aboard the 
NOAA (National Oceanic and Atmospheric Administration) satellites. The data are 
from five spectral bands (one in the visible, one in the near IR, and three in the 
thermal IR), with a spectral resolution (pixel size) of 1 lkm, a swath width of 
2400km, and coverage every 24 h (Lillesand & Kiefer 1987). 

Because of the daily coverage and broad swath width, AVHRR data are particularly 
useful for examining temporal changes of primary production, snow cover, and 
regional differences in vegetation patterns that would be difficult to detect on 
mosaics of higher resolution satellite images (e.g. MSS or TM, see below). Topics of 
investigation for the natural ecosystem include seasonal and latitudinal changes in 
primary production, contrasts between physiographic provinces (Wahrhaftig 1965), 
and vegetational contrasts on major surficial deposits (e.g. sand sea, marine deposits, 
less, and fluvial deposits). Anthropogenic influences analysed at this scale include 
climate change and its effects on timing of snow melt and seasonal changes along 
primary production gradients. AVHRR data have been used to detect major regions 
of minerotrophic vegetation associated with modern less deposits on the Coastal 
Plain and in the Arctic Foothills (Walker & Everett, in press). 

Mesoscale (1O2_104 kMi2) 
At the mesoscale, topics of investigation involve second-order watersheds to 

subregions. Typical questions are related to large-watershed biogeochemistry, wildlife 
habitat, geobotany of large regions and long elevational gradients. Anthropogenic- 
disturbance questions include those related to the full extent of road and pipeline 
networks, land-use patterns, and the effects of climate change on primary production. 
The mesoscale domain is divided into the mesoregion and microregion sublevels. 

The primary data sources at the mesoregion sublevel are derived from the Landsat-4 
and -5 satellites, which include the multispectral sensor (MSS; two bands in the 
visible, two in the near-IR; 79-m pixel size; 185-km swath width; and coverage every 
16 days) and thematic mapper (TM; three bands in the visible, one in the near IR, 
two in the mid IR, and one in the thermal IR; 30-m pixel size; and coverage every 
16 days). MSS data have been used extensively on the North Slope for landcover 
classification (George, Stringer & Baldridge 1977; Nodler & Laperrier 1977; Morrissey 
& Ennis 1981; United States Geological Survey 1976, 1981; Walker et al. 1982; 
Walker and Acevedo 1987;). The TM sensor has more bands located in critical 
regions of the spectrum for detecting plant water stress, thermal mapping, and 
greater spatial resolution for better differentiability of surface features (Lillesand & 
Kiefer 1987). TM has proved particularly useful for differentiating snow from cloud 
cover and discriminating some rock types. 

Microregion databases are being constructed using High Resolution Visible (HRV) 
data from the Systeme Pour l'Observation de la Terre or SPOT-i satellite and integrated 
geobotanical maps made from low-elevation aerial photographs. The SPOT satellite 
has two modes of sensing: (i) a panchromatic (black and white) mode (one band in 
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the visible, 10-m pixel size, 117-km swath width), and (ii) a multispectral mode (two 
in the visible and one in the near-IR, 20-m pixel size, 117-km swath width). The 
sensors can be pointed off nadir so that images from passes on successive days can 
be used to produce stereoscopic coverage and three-dimensional images of the 
terrain. 

We are currently building two microregional databases in the foothills of the 
Brooks Range to examine ecological differences in two watersheds on different-aged 
glacial surfaces (Fig. 5). These are nested within a planned mesoregion database that 
will enclose both watersheds. A SPOT-derived vegetation classification has been 
made for the R4D research site at Imnavait Creek (Stow, Burns & Hope 1989). This 
same area has been mapped using integrated geobotanical mapping techniques 
(Walker et al. 1989). The microregion GIS consists of the following layers: (i) the 
SPOT data; (ii) a digital terrain model (Fig. 6) which, in this case, is an array of 
terrain elevations sampled at 10-m X- Y intervals, and (iii) an integrated geobotanical 
map (vegetation, terrain units, landforms, surface forms, and percentage water 
cover). Details of the geobotanical mapping methods and legends are explained in 
Walker et al. (1989). 

Site level (microscale) 
The microscale (100_ 106 M2) level includes studies ranging in scale from -iM2 

plots to first order watersheds. Currently, we are developing databases at the 
macrosite (104- 106 M2) and microsite (100_ 102 M2) sublevels. Natural ecosystem 
questions being investigated at these levels are related to watershed-process dynamics, 
toposequence geobotany and geochemistry, snow dynamics, and plant species 
dynamics. Also, most anthropogenic disturbances can be investigated at the micro- 
scale level, including monitoring the effects of road dust, oil spills, roadside flooding, 
and thermokarst. Scientific questions at these scales include: (i) What is the influence of 
snow distribution on vegetation-community patterns, and how will they be altered by 
climate change? (ii) What are the influences of terrain age and less on vegetation- 
community patterns and soil organic accumulation along toposequences? (iii) How 
do these patterns influence soil-water chemistry and the movement of nutrients 
downslope? (iv) What are the patterns of plant-species dynamics associated with 
existing disturbance regimes and how will these be influenced by climate change? 
(v) What are the microsite variations in primary production and vegetation structure, 
and how will these change with altered climate or other anthropogenic influences? 

Macrosite (100 m2_1 km2) 
Within each of the microregion areas, permanent 1000 x 1000-m grids have been 

surveyed with Universal Transverse Mercator (UTM) coordinates to provide a 
framework for macrosite investigations. The vegetation within each grid has been 
mapped at the plant association level (Braun-Blanquet 1932; Westhoff & van der 
Maarel 1973). The grid and the GIS are conducive to the collection of a highly 
integrated geographically referenced database. Current studies are focusing on the 
changes in plant growth forms, species composition, soils, and water chemistry along 
the toposequences. 

Microsite (100 cm2-100 M2) 

Detailed studies of vegetation structure and plant-species dynamics in response to 
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FIG. 6. Digital terrain models of the Imnavait Creek mesoregion (bottom) and macrosite 
(top) databases. The macrosite database encloses a 700 x 800-m UTM grid. Microsite 
databases are available for 1 x 1-m permanent plots at each grid point (Fig. 7). The dashed 
line in the bottom terrain model encloses the Department of Energy's R4D Imnavait Creek 
research watershed. 

site factors, climate change, and anthropogenic disturbances are being conducted 
using permanent plots (1 x 1 m with 10-cm gridpoint spacing; Fig. 7). These plots 
are located at each of the 100-m gridpoints within the mesosite grids (above). The 
plots are particularly useful for long-term studies. Plant-species occurrence and 
height of the vegetation canopy are recorded and monitored at 5-year intervals to 
detect changes in species composition and vegetation canopy structure. Microsite 
databases are also being used to examine the response of vegetation to road dust and 
other anthropogenic disturbances. 

Linking elements 
Several characteristics of the ecosystem can be 'scaled up' to allow extrapolation 

from detailed plot-level studies to broader regions. For example, greeness indices, 
derived from spectral reflectance in the red and near-infrared bands, are used to 
estimate the leaf area index (Jordan 1969; Tucker 1979). Multispectral data can be 
collected at any scale in the hierarchy using hand-held, airborne, and satellite- 
mounted radiometers. Biomass from clip-harvest plots is used to calibrate the spectral 
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information collected with hand-held and low-altitude aircraft-mounted radiometers. 
This information is pooled for primary production estimates at higher levels in the 
hierarchy (Hope 1988). 

In forested ecosystems, investigators have successfully scaled-up canopy-chemistry 
characteristics (Wessman et al. 1988), evapotranspiration and net photosynthesis 
(Running et al. 1989) using remotely sensed information. Relationships have also 
been developed between spectral reflectance, canopy chemistry, and nitrogen cycling 
(Wessman, Aber & Peterson 1989), thus offering promise of remotely sensed images 
of ecosystem function. Other elements that can be linked between scales are water 
run-off and stream geochemistry. Soil run-off models are currently under development 
at San Diego State University (Ostendorf & Reynolds 1990) that will run at meso- to 
microscale levels using digital terrain data, maps of precipitation (snowpack and 
rainfall), and estimates of potential surface evaporation derived from radiation- 
budgets based on slope and aspect. Investigators at the Marine Biological Laboratory 
in Woods Hole are developing geochemistry models that will link the runoff models 
with GIS geobotanical characteristics. 

The methods of scaling up to regional and global scales are still in their infancy, 
but they need to be developed if detailed process-level investigations are to be 
applied at broader scales. The hierarchical GIS presented here is a framework for 
this. The methods could also be applicable to other ecosystems. 
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