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ABSTRACT. A new emphasis on understanding natural systems at large spatial scales has led to an interest in deriving
ecological variables from satellite reflectance images. The normalized difference vegetation index (NDVI) is a measure
of canopy greenness that can be derived from reflectances at near-infrared and red wavelengths. For this study we
investigated the relationships between NDVI and leaf-area index (LAI), intercepted photosynthetically active radiation
(IPAR), and biomass in an Arctic tundra ecosystem. Reflectance spectra from a portable field spectrometer, LAI, IPAR,
and biomass data were collected for 180 vegetation samples near Toolik Lake and Imnavait Creek, Alaska, during July
and August 1993. NDVIvalues were calculated fromred and near-infrared reflectances of the field spectrometer spectra.
Strong linear relationships are seen between mean NDVI for major vegetation categories and mean LAI and biomass.
The relationship between mean NDVI and mean IPAR for these categories is not significant. Average NDVI values for
major vegetation categories calculated from a SPOT image of the study area were found to be highly linearly correlated
to average field NDVI measurements for the same categories. This indicates that in this case it is appropriate to apply
equations derived for field-based NDVI measurements to NDVI images. Using the regression equations for those
relationships, biomass and LAI images were calculated from the SPOT NDVI image. The resulting images show
expected trends in LAI and biomass across the landscape.
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Introduction

Advantages of remotely sensed observations of
ecological variables

The new emphasis in the natural sciences on the under-
standing of global scale phenomena has prompted ecolo-
gists to seek methods by which ecological data can be
collected at large spatial scales. For example, calculating
fluxes of trace gases from a region would require estimates
of the spatial extent and variability across the region of
ecalauiirhyanigblgsahar font! toreaflinyae, Grllaating
fluxes of trace gases from aregion would require estimates
of the spatial extent and variability across the region of
ecological variables that control these fluxes. Collection
of such data through field surveys is usually not feasible
because of financial and time limitations. Remotely sensed
reflectance data provide an alternative means for making
these estimates.

Additional advantages of remotely sensed reflectance
data include the non-destructive nature of reflectance
measurements. Moreover, they record the actual rather
than the potential state of ecological variables, because
they include any local perturbations. For example, effects
of variation in soils, topography, vegetation history, dis-
turbance regimes, or anthropogenic perturbations (such as
agriculture and development) are inherent in remotely
sensed data (Box and others 1989; Prince 1991; Walker
and Walker 1991). Commonly used bioclimatic estimates
of ecological variables, on the other hand, can only de-
scribe the vegetation that is expected on the basis of
average climatic conditions.

Objective of this study

The objective of this study was to investigate the feasibility
of deriving variables of ecological interest from satellite
multispectral reflectance images of Arctic tundra. A
particular interest in studying aspects of the carbon cycle
led to examining the relationships between reflectance and
biomass, leaf-area index (LAI), and intercepted
photosynthetically active radiation (IPAR), because these
ecological variables are relevant to this cycle. LAl is a
measure of the density of foliage. IPAR is an indication of
the photosynthetic rate of the canopy. Biomass is a
measure of the amount of carbon stored in the canopy.
Many previous studies have examined relationships be-
tween reflectance and biomass, LAI, and IPAR in temper-
ate ecosystems and crops (for example, Biscoe and others
1975; Hodges and Kanemasu 1977; Asrar and others
1985). LAI and IPAR have been used in crop yield and
evapotranspiration models and vegetation monitoring ef-
1975; Hodges and Kanemasu 1977; Asrar and others
1985). LAI and IPAR have been used in crop yield and
evapotranspiration models and vegetation monitoring ef-
forts (for example, Wiegand and others 1979; Steven and
others 1983; Hatfield and others 1984).

Vegetation indices

When sunlight falls on green vegetation, red wavelengths
(near 0.6 um) are absorbed by chloroplasts, while near-
infrared wavelengths (0.7-0.9 ym) are reflected. Because
this spectrum is unique to vegetation, one way to infer the
amount of vegetation existing in a pixel of a multispectral
reflectance image is to compare the reflectance for that
pixel at red wavelengths to the reflectance at near-infrared
wavelengths. If the near-infrared reflectance is much
larger than the red reflectance, then presumably there is a
considerable amount of green vegetation present. The use
of a ratio of near-infrared to red light for estimating
vegetation amount was first reported by Jordan (1969). He
used aratio of light transmitted to the forest floor at 0.800
and 0.675 um to derive the leaf-area index for forest
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the Arctic, Stow and others (1993) demon-
strated that mean NDVI values for major
vegetation types near Toolik Lake, Alaska
were significantly different from each other.
Walker and others (1995) have related NDVI
to landscape age and other site factors in the
same region. Hansen (1991); Auerbach
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(1992); and Hope and others (1993) have
investigated the relationship between NDVI
and biomass in Arctic vegetation with mixed
results. The relationship between NDVI and
LAI or IPAR in Arctic tundra has not been
investigated before this study.

Methods

Study site

The study area was in the Kuparuk River
watershed in the northern foothills of the
Brooks Range, Alaska (Fig. 1). It included
Toolik Lake, which is the site of a research
station operated by the Institute for Arctic
Biology at the University of Alaska,
Fairbanks. This area is the focus of other

Fig. 1. The study site.

canopies in a tropical rain forest. Studies by Colwell
(1973, 1974) concluded that the ratio of reflected infrared
light toreflected red light was useful for estimating biomass
of a grass canopy. This ratio is referred to today as the
simple vegetation index or simple ratio. Rouse and others
(1973, 1974) developed what we now refer to as the
normalized difference vegetation index (NDVTI), which is
the difference between near-infrared and red reflectances
divided by their sum. Many other variations of the vegeta-
tion index have been developed over the years. In general,
however, the different vegetation indices contain the same
information, and are therefore considered to be function-
ally equivalent (Perry and Lautenschlager 1984; Tucker
and Sellers 1986).

uuwlhrerurraazcteth vogruatnsicmindeoy volnaeacher Jathe
information, and are therefore considered to be function-
ally equivalent (Perry and Lautenschlager 1984; Tucker
and Sellers 1986).

Theory suggests that vegetation index values should be
proportional to IPAR (Sellers 1985, 1987, 1992; Baret and
Guyot 1991). Near-infrared reflectance is proportional to
twice the pathlength of solar radiation, because it travels
both into and out of the canopy. IPAR is proportional to
one pathlength of the radiation, because it does not travel
out of the canopy. Near-infrared reflectance, therefore,
should be proportional to IPAR. Consequently, if the
background to the vegetation canopy is very dark, IPAR
should be proportional to vegetation index values. Be-
cause IPAR is proportional to LAI (a more dense canopy
results in more intercepted light), LAI should also be
proportional to vegetation index values. Because, LAl is
alsorelated to biomass (the more biomass, the more dense
the canopy), biomass should also be proportional to veg-
etation index values.

Arctic ecological research programs, such as

the Arctic Long-Term Ecological Research
(LTER) project, the Response, Resistance, Resilience to
and Recovery from Disturbance in Arctic Ecosystems
(R4D) project sponsored by the US Department of Energy,
and the Land—Atmosphere—Ice Interactions (LAII) flux
study sponsored by the US National Science Foundation.
The vegetation includes moist tussock tundra, riparian
shrublands, wet sedge meadows, and dry upland heath
communities. It is broadly representative of the Southern
Arctic Foothills physiographic province of the North Slope
of Alaska (Walker and others 1989).

Field measurements

Reflectance spectra from a portable field spectrometer,
LAI, TPAR, and above-ground biomass measurements
were collected for 60 plots near Toolik Lake and Imnavait
e mtisdremén
Reflectance spectra from a portable field spectrometer,
LAI, TPAR, and above-ground biomass measurements
were collected for 60 plots near Toolik Lake and Imnavait
Creek, Alaska (Fig. 1) between 25 July and 10 August
1993. Plots were selected to represent a wide variety of
vegetation types typical of the Southern Arctic Foothills
physiognomic province. Three replicates were sampled at
each plot, for a total of 180 samples. While all variables
were collected at most plots, biomass was not collected at
plots with tall shrubs, due to difficulties associated with
clipping these plots. Reflectance spectra were collected
using a PS-II portable field spectrometer manufactured by
Analytical Spectral Devices, Inc. The PS-II contains a 100
mm focal length, holographic grating spectrometer de-
signed to collect light from an external source through a
bundle of 19 optical fibers. The captured light travels
through the fibers and strikes a grating that diffracts the
light into its component wavelengths. The diffracted light
falls on the surface of a silicon photo diode array detector
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Fig. 2. The hierarchy of vegetation groupings used to combine field data. Community groups are used in Figure 6 and

in Walker and others (1995).

Community types are indicated by abbreviations: Aj-Jb = Anthelia juratzkana-Juncus

biglumis; Bn-Sg = Betula nana-Salix glauca; Di-Ct = Dryas integrifolia-Cassiope tetragona; DI-Ct = Diapensia lapponica-
Cassiope tetragona; Ea-Ca = Eriophorum angustifolium-Carex aquatilis; Ea-Sp = Eriophorum angustifolium-Salix
planifolia; Ha-Aa = Hierochloé alpina-Arctous alpina; Ha-Bn = Hierochloé alpina-Betula nana; Hv-Af = Hippuris vulgaris-

Arctophila fulva; Of-Di =

Ochrolechia frigida-Dryas integrifolia; SI-Sf = Sphagnum lenense-Salix fuscescens; So-Es =

Sphagnum orientale-Eriophorum scheuchzerf;, Sr-Ev = Sphagnum rubellum-Eriophorum vaginatum; Ss-Do = Selaginella
sibirica-Dryas octopetala; Tn-Cb = Tomenthypnum nitens-Carex bigelowii;, and Tn-Tc = Tomenthypnum nitens -

Trichophorum caespitosum .

The spectrometer gun was mounted on a 1-m long tripod
arm, which was leveled prior to collecting measurements
ateachreplicate plot. The effects of electron charge build-
up in the silicon diode detector array of the spectrometer
wereremoved by subtracting a spectrum collected with the
shutter closed from every reflectance measurement. At-
mospheric effects were removed by calibrating the
spectrometer to a spectralon panel immediately prior to
every reflectance measurement. NDVI values were calcu-
lated from reflectances at wavelengths corresponding to
the Landsat TM red band (630-690 nm) and the near-
infrared band (760-900 nm), according to equation 1:

CVOlY 1C1IC0LLALILT LHITADULTLICLL, INLJ V1 VdIUC> WCIC Ccalvu-

lated from reflectances at wavelengths corresponding to

the Landsat TM red band (630-690 nm) and the near-

infrared band (760-900 nm), according to equation 1:
NIR —red

NDVI = — [1]
NIR + red

where NIR is the reflectance of the plot at the near-infrared
band, and red is the reflectance of the plot at the red band.
The spectrometer software includes an algorithm for ap-
proximating reflectance values of Landsat Thematic
Mapper (TM) bands. The bandpasses for each of the TM
bands is approximated by a square bandpass. The width of
the square bandpass used is equal to the width at half the
maximum of the corresponding TM bandpass. The re-
flectance value calculated for this TM band is the average
PS-II reflectance within the band. Gallo and others (1987)
demonstrated that NDVTI calculated from TM bands is
virtually identical to NDVI calculated from the French
Systéme Probatoire d’Observation de la Terre (SPOT)

Therefore, the authors thought it unnecessary to develop
an algorithm to approximate SPOT bands from the
spectrometer data, even though working with a SPOT
image for this study.

LAI was measured with a PCA-2000 plant canopy
analyzer manufactured by LI-COR, Inc. IPAR was meas-
ured with a LI-1000 line quantum sensor, also manufac-
tured by LI-COR, Inc. Total biomass was measured by
collecting all above-ground organic material at each sam-
ple site within a 50 x 20 cm wire frame centered over the
site of reflectance, LAI, and IPAR measurements. These
biomass samples were then sorted into green, dead, and
umm’bf.frgaﬁm YUTELUULIU VL EALLIV LILAWL 1AL Gl VAVAL DALLL
ple site within a 50 x 20 cm wire frame centered over the
site of reflectance, LAI, and IPAR measurements. These
biomass samples were then sorted into green, dead, and
woody fractions.

Image processing

NDVI was also calculated from a SPOT multispectral
satellite image of the study area acquired on 29 July 1989.
Priortocalculation of NDVI, this image was radiometrically
calibrated using coefficients provided by SPOT Image
Corporation. Next, the spectrum of the darkest pixel in the
image was subtracted from every other pixel spectrum to
correct for atmospheric effects. Two areas in the SPOT
scene, corresponding to the areas of a 1:5000 scale
geobotanical map of the Toolik Lake area and a 1:6000
scale geobotanical map of the Imnavait Creek area (Walker
and others 1989) (Fig. 1), were separated into different
physiognomic vegetation categories using boundaries from
these maps. Mean and standard deviation of NDVI values
from the SPOT image for the different physiognomic
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Analysis

NDVI, LAIL IPAR, and biomass data from the 180 samples
were grouped into four broad physiognomic vegetation
categories, and means and standard deviations of each
category were calculated. The data were also grouped into
16 community types (each physiognomic category com-
prised several community types) (Fig. 2), and the means
and standard deviations of each variable for each commu-
nity type were calculated. All analyses were performed
three times: once with average values for the broad
physiognomic categories, once with average values for the
more specific community types, and once with ungrouped
data. Mean LAI, IPAR, and biomass values were plotted
against the corresponding NDVI values for each data
grouping. Curves were fitted to these data. Although
vegetation indices are usually considered to be a function
of vegetation amount, these scatterplots were constructed
with NDVI as the independent variable, in order to calcu-
late LAIL IPAR, and biomass from NDVI.

Mean and standard deviation of NDVI values from the
SPOT image were compared to mean field NDVI values
for the four broad physiognomic categories using linear
regression. This was done in order to determine the
appropriateness of applying results of analyses performed
with the field measurements to the SPOT image.

Biomass and LAI images were calculated from the
SPOT NDVI image. The equation from the regression of
field NDVI versus SPOT NDVI was first used to convert
the SPOT NDVI values to field NDVI values. LAI and
biomass values were then calculated for each pixel in the
image using the equation from the linear regression of
NDVI versus LAI and NDVI versus biomass for
physiognomic categories.

Results

For all of the following analyses it was found that total
above-ground biomass is better correlated to NDVI than
green biomass alone. Mean NDVI was found to be
strongly correlated to mean total biomass (R?=0.969) and
mean LAI (R? = 0.956) when data are grouped into
physiognomic categories (Figs 3a and 3b). Although the
elatinnebin_between mean NNDVI and. mean JPAR for
strongly correlated to mean total biomass (R?=0.969) and
mean LAI (R? = 0.956) when data are grouped into
physiognomic categories (Figs 3a and 3b). Although the
relationship between mean NDVI and mean IPAR for
these categories appears to be strong, it is not significant at
the 5% level (Fig. 3c). When the data are grouped into
community types, mean NDVI was found to be signifi-
cantly correlated to mean biomass (R? = 0.856) (Fig. 4).
The curve that provides the best fit to these data is asymp-
totic, with the maximum NDVI value near 1.0. When data
are ungrouped, the best fit between NDVT and biomass is
again asymptotic (Fig. 5). This relationship is significant,
but not strong (R? = 0.267). Mean field NDVI values and
mean SPOT image NDVI values were found to be strongly
correlated (R? = 0.899) (Fig. 6). However, ficld NDVI
values were consistently about 40% higher than SPOT
NDVI values.

The LAI and biomass images created from the SPOT
NDVI image using the regression equations from the
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Fig. 3a. The relationships between NDVI and LAl when
plots are grouped into physiognomic categories.
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Fig. 3b. The relationships between NDVI and biomass
when plots are grouped into physiognomic categories.

08 e | T ¥ T T —

IPAR = -1.3 + 2.5 (NDV]) Shrub

07 |- R? = 0.846
0.6 |-

IPAR = -1.3 + 2.5 (NDV})

Shrub
07 |- R? = 0.846 -

06 |-

0.5

04

03 |-

IPAR (umol s m'?)

0.2

0.1 |-

0.55

Ficld NDVI

Fig. 3c. The relationships between NDV! and iPAR when
plots are grouped into physiognomic categories.

landscape that are expected on the basis of geobotanical
maps of the area (Walker and others 1989) (Fig. 7). Water
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L 7 ship between NDVI and IPAR was not
significant (Fig. 3c).

Discussion

When the data for this study are grouped
into the broad physiognomic catego-
ries, the curves that provide the best fit
between NDVI and LAI or biomass are
linear and quite strong (Figs 3a, 3b, 3c).
This indicates that NDVI is linearly
related to LAI and biomass in a general
sense. However, as more detail is ad-
mitted into the analysis by breaking the
data into more specific categories, indi-
vidual vegetation types and plots devi-
ate from this linear relationship. An
asymptotic relationship is revealed, the
— | strength of which is reduced with in-

2000 |- T T '
Biomass = 27.6 * (NDVI - 0.98)2 Bn-Sg
R? = 0.856 +
1500 —
E
)
z
£ 1000
8
[aa]
5
g
~
500
0 4 . 1
0 0.2 04 0.6 0.8 :

Field NDVI

Fig. 4. The relationship between NDVI and biomass for the 180 plots grouped
Community type abbreviations are

into categories by community type.
described in the caption of Figure 2.

creasing detail (Figs 4 and 5). These
results are consistent with recent dis-
cussions within the literature that assert
that lowering resolution of models can
increase predictability by averaging out
chaotic behavior at the expense of los-

2000 T T T —

Biomass = 183 * (NDVI - 1.4)?
R? = 0.267

1500 -

Total Biomass (g/mz)

. ing detail about the phenomenon
(Costanza and Maxwell 1994).

. When the data are grouped into com-
munity types or left ungrouped, the
| curves that provide the best fit between
NDVIand biomass are asymptotic (Figs
4 and 5). The asymptotic relationship
between biomass and reflectance data
for grass canopies has long been known
(Tucker 1976). It is thought that as
vegetation density increases, absorp-
tion approaches a maximum, beyond
which any additional vegetation den-
sity would not contribute to the overall
reflectance signature. An NDVI value
near 1.0 would imply that the chloro-
phyllin the vegetation had absorbed all
in¢ident red light. This. therefore. is the

reflectance signature. An NDVI value
near 1.0 would imply that the chloro-
phyllin the vegetation had absorbed all
incidentred light. This, therefore, is the

Field NDVI

Fig. 5. The relationship between NDVI and biomass when replicate plots are

ungrouped.

shrub vegetation, show LAI values greater than 3 and
biomass values greater than 2000 g m2. Most barren
hilltops and water bodies show LAI values of zero and
biomass values less than 100 g m2. Wetlands generally
show LAI values between zero and 1.0 and biomass values
between 100 and 500 g m 2. Upland interfluvial areas with
tussock tundra vegetation have LAI values between 1.0
and 2.0 and biomass values between 500 and 1000 g m2.
These values are consistent with values reported in the
literature for the same area (Shaver and Chapin 1991). An

ATTY AT e e e e I L

theoretical maximum value for NDVI.
The maximum NDVI value for the as-
ymptotic curve relating mean NDVI to
mean biomass for community types is
indeed near 1.0.

The asymptotic relationship between mean NDVI and
biomass for community types supports the results of Hansen
(1991), which showed a strong exponential relationship
between NDVIand biomass for data from many Arctic and
sub-Arctic vegetation types. It is believed, however, that
an asymptotic curve could be fitted to Hansen’s data with
good results. An asymptotic curve would make more
physical sense than an exponential curve for reasons
discussed above. These results in the present study,
however, are quite different from those reported when
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1992; Hope and others 1993). Both of
those studies concluded that within tus-
sock tundra, biomass is only one of the
factors strongly influencing NDVI and
that the other factors obfuscate any rela-
tionship that exists between NDVI and
biomass. It appears that, within one veg-
etation type, NDVI and biomass may not
be strongly related, whereas among many
vegetation types the relationship can be
quite strong. Therefore, NDVI may not be
an appropriate means for estimating
biomass when one is interested in detailed
variations within one vegetation type.
However, when one is interested in broad
changes in biomass among very different
vegetation types, NDVI may be an appro-
priate means for estimating biomass.

Some vegetation community types fall
significantly outside the NDVI versus
biomass curve (Fig. 4). The type Betula
nana-Salix glaucahaslower NDVIvalues
than expected from the curve. This com-
munity type includes many shrubs, and it
is likely that the wood in these
shrubs contributes to high biomass
measurements, but not to the chlo-
rophyll absorption that is detected
by NDVI. Several communities
with abundant graminoid species
(for example, Tomenthypnum
nitens-Tricophorum caespitosum
and Tomenthypnum nitens-Carex
bigelowii) have lower values of
NDVI than expected from the
curve. This may be due to the large
amounts of standing dead associ-
ated with graminoid vegetation,
which does not contribute to chlo-
rophyll absorption. Moreover,
graminoid vegetation has a pre-
dominantly vertical leaf orientation,
which does not contribute to chlo-
rophyll absorption. Moreover,
graminoid vegetation has a pre-
dominantly vertical leaf orientation,
which results in lower NDVI val-
ues relative to those for canopies
with horizontal leaf orientation
(Sellers 1985).

All the analyses involving
biomass were performed using both
total above-ground biomass and
photosynthetic biomass. In every
case, the relationships between
biomass and NDVI are consider-
ably stronger when total above-
ground biomass is used. This is
counter-intuitive, because it was
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expected that the presence of non-
photosynthetic material should
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suggested that the relationship between LAI and NDVI
should be weaker when non-photosynthetic material is
present than when it is not, even if only photosynthetic
material is included in the calculation of LAL Perhaps this
effect also causes a weaker relationship between LAI and
NDVI when only photosynthetic material is considered
than when all material is considered. In addition, perhaps
asimilar effect causes the stronger relationships noted here
between total biomass and NDVI than between photosyn-
thetic biomass and NDVIL.

Many different factors probably contribute to the higher
NDVI values from field spectra than from SPOT spectra
(Fig. 6). These include low sun angle in combination with
relatively high view angle of the SPOT sensor. Because of
this lighting geometry, the SPOT sensor receives
backscattered light, while the field sensor receives for-
ward-scattered light. Forward-scattered light travels
through more vegetation, thus saturating the chlorophyll
absorption features, resulting in higher NDVI values. In
addition, the SPOT sensor sees less shadow due to the low
angle between incident light and the light reflected toward
the sensor. Shadows decrease the reflectance at all wave-

Fig. 7. Images of biomass (opposite) and LAI (below), generated from a SPOT
NDV! image using the relationships between biomass, LAI, and NDVI observed in
this study.

lengths, resulting in higher NDVI values. More atmos-
phere is also present between the SPOT sensor and the
vegetation than between the field sensor and the vegeta-
tion. Although adark object subtraction was applied to the
SPOT image to correct for atmospheric effects, this cor-
rection is only an approximation. The field sensor is
corrected for atmospheric effects immediately prior to
data collection, thereby minimizing effects of atmosphere.
This is not possible for the satellite-born SPOT sensor.
Atmospheric interference would result in higher red
reflectances and therefore lower NDVI values. Finally,
the SPOT sensor integrates reflectance data over the 20 x
20 m area of its instantaneous field of view. The field
sensor, on the other hand, integrates reflectance data from
a circular field of view with a radius of approximately 10
cm. The areas chosen to be measured with the field sensor
did not include bare patches, water, or rocks. The SPOT
sensor mixes signals from all materials within its field of
view, including bare patches, water, and rocks, which
undoubtedly lower the NDVI values reported for each
vegetation type.

The biomass and LAI images calculated from the
SPOT NDVI image using the re-
gression equations in Figure 3 have
values consistent with those previ-
ously reported for the region
(Shaver and Chapin 1991) (Fig. 7),
except for shrublands where the
values are slightly higher in the
images. A possible explanation for
this discrepancy is that Shaver and
Chapin sampled only one shrub
site, and this site may have had
lower biomass and LAI than many
other shrublands in the area.

Conclusions

When the data from this study are
grouped into broad physiognomic
categories, the relationships be-
tween NDVI and biomass or LAI
are linear and strong. The relation-
ship between NDVI and IPAR is
categories, the relationships be-
tween NDVI and biomass or LAI
are linear and strong. The relation-
ship between NDVI and IPAR is
not significant. When data from
this study are grouped into com-
munity types the relationships be-
tween NDVIand biomass are strong
and asymptotic, with maximum
NDVI values near 1.0. When the
data from this study are left
ungrouped, the relationship be-
tween NDVI and biomass is as-
ymptotic, but not strong.
Reducing the detail of these
analyses increases the predictabil-
ity by averaging out chaotic

Leaf Area Index
| T

n")nt-,\

behavior at the expense of losing
detail about the relationship.
Within one vegetation type,
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strongly related, whereas among many vegetation types
the relationship can be strong.

Low sun angle, high view angle of the SPOT sensor,
atmospheric effects, and spatial resolution all contribute to
lower NDVI values for community types from the SPOT
image than from the field sensor.

The LAI and biomass images calculated from the
SPOT NDVI image using the regression equations dis-
cussed above provide realistic representations of the spa-
tial variation and magnitudes of LAI and biomass in this
area.
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