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Abstract 
An accuracy assessment of a Landsat MSS-derived land-cover 
map of the Kuparuk River basin, Alaska was performed. We 
used a stratified systematic transect-based sampling design 
with a homogeneous 3- by  %pixel block sampling unit. The 
ramifications of the sampling strategy are discussed. Sample 
sites were located using a helicopter and a Y-Code GPS re- 
ceiver. Estimates of overall classification accuracy (P), Tau 
(T,), producer's accuracy, and user's accuracy were calcu- 
lated from an error matrix. Assessment methods based on 
fuzzy sets theory were used to supplement the error matrix. 
The accuracy estimates indicate a classification with high 
accuracy. However, they are likely to have a fair degree of 
optimistic bias and can only be applied reliably to homoge- 
neous 3 by 3 blocks of pixels. The combined use of an error 
matrix and fuzzy sets allowed for a more precise analysis of 
errors. Based on this analysis, changes were made to the fi- 
nal map. Several methodological advantages contributed to 
the high classification accuracy. 

Purpose 
Quantifying and documenting the accuracy of maps and spa- 
tial data are important components of any mapping process. 
However, assessing the accuracy of a map can be a time-con- 
suming and expensive process. This is especially true for 
maps of remote areas, such as the North Slope of Alaska, 
which can involve considerable financial, logistical, and 
technical constraints. This paper presents an accuracy assess- 
ment of a satellite-derived land-cover map of the Kuparuk 
River basin on the North Slope of Alaska and examines how 
the choice of sampling strategy and analysis methods affects 
estimates of classification accuracy and their usefulness. 
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The Kuparuk River Basin Land-Cover Map 
As part of the of the National Science Foundation's (NSF) 
Land-Atmosphere-Ice-Interactions (LAII) Flux Study (Weller 
et al., 1995), a land-cover map of the Kuparuk River basin 
was derived from Landsat Multi-Spectral Scanner (MSS) satel- 
lite image data. The Kuparuk River basin, located on the 
North Slope of Alaska, covers approximately 9,201 km2 and 
extends 216 km from north to south, and 78 km from east to 
west (Figure 1). Except for the Dalton Highway and oil drill- 
ing bases along the Arctic coast, this area of the North Slope 
remains undeveloped, remote, and difficult to access. 

General vegetation land-cover types were derived by 
classification of the Landsat MSS satellite data (Plate 1; N. 
Auerbach et al., unpublished data, 1996). A framework for 
the land-cover type designations was provided by Braun- 
Blanquet vegetation analysis of a tussock tundra landscape in 
the Brooks Range Foothills, Alaska (Walker et al., 1994). De- 
rived classes include (1) Barrens, (2) Moist nonacidic tundra 
(MNT), (3) Moist acidic tundra (MAT), (4) Shrublands, (5) Wet 
tundra, (6) Water, (7) Clouds and Ice, and (8) Shadows. To 
expedite image processing, the digital data for a rectangular 
region encompassing the Kuparuk River watershed were ex- 
tracted from an existing mosaic of MSS frames covering the 
Central Arctic Management Area (CAMA) and Arctic National 
Wildlife Refuge (ANWR), northeast Alaska, produced by the 
U.S. Geological Survey, EROS Data Center, Sioux Falls, South 
Dakota. Images for the entire mosaic were acquired during 
the snow-free growing seasons of 14 August 1976 through 2 
August 1985. Due to prevalent cloud cover over the North 
Slope during most growing seasons, single-time-period (e.g., 
one week) mosaics of imagery from sun-synchronous satel- 
lites are generally not feasible. The mosaic (80 m nominal 
spatial resolution) was resampled to 50-m pixels, and was 
geometrically corrected using cubic convolution interpolation 
by means of a second-order polynomial registration, with a 
resultant root-mean-square error (RMSE) of 57.4 m. An Iso- 
Data unsupervised classification approach was implemented 
based on input of the green, red, and infrared spectral bands 
of the MSS image. Forty cluster classes were initially gener- 
ated and then aggregated into the eight land-cover classes. 
We used first-hand experience and familiarity with the area, 
as well as geobotanical maps and earlier Landsat-derived 
maps of the region, as supplementary information to inter- 
pret the spectral classes (Walker et al., 1982; Walker and Ac- 
evedo, 1987; Walker et al., 1989; Walker and Walker, 1991; 
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Figure 1. Location of the Kuparuk River Watershed within northern Alaska. 

Walker and Walker, 1996; Walker et al., unpublished data, 
1996). The Mss classification was refined through post-classi- 
fication sorting using ancillary data (Hutchinson, 1982). 

Background 
In general, an accuracy assessment of a map classification is 
performed by comparing it to a more detailed, independently 
sampled data set. A considerable amount of research has fo- 
cused on various methods of assessing the accuracy of maps 
derived from remotely sensed data; most of these are de- 
signed for and applicable to categorical data. Hord and 
Brooner (1976), van Genderen and Lock (1977), and Hay 
(1979) presented and discussed methods for determining ap- 
propriate sample size. Others have presented discussions, re- 
search, and empirical experiments on various sampling 
designs (Congalton, 1988; Gong and Howarth, 1990; Steh- 
man, 1992). Story and Congalton (1986) discussed the use of 
error matrices for the analysis of reference data, including 
calculation of descriptive statistics such as producer's and 
user's accuracy. Congalton et al. (1983), Rosenfield and Fitz- 
patrick-Lins (1986), Hudson and Ramm (1987), and Foody 
(1992) discussed various uses and iterations of the Kappa co- 
efficient of agreement, which is derived from an error matrix. 
Card (1982), Rosenfield (1986), Naesset (1995), and Ma and 
Redmond (1995) presented alternative statistical methods for 
measuring accuracy. Gopal and Woodcock (1994) presented 
methods for using fuzzy sets in accuracy assessments of the- 
matic maps. Recently, some researchers have shifted focus 
from assessing spectrally caused classification errors to as- 
sessing a myriad of spatial and temporal sources of error 
(e.g., positional error between image and reference data) that 
can bias estimates of classification accuracy (Congalton and 
Green, 1993; Verbyla and Hammond, 1995; Hammond and 
Verbyla, 1996). 

Mapping of land cover and vegetation in remote areas of 
northern Alaska have been performed by Morrissey and En- 
nis (1981), Walker et al. (1982), C. J .  Markon (unpublished 
data, 1986), Walker and Acevedo (1987), FIeming (1988), 
Stow et al. (1989), Markon (1992), Jorgenson et al. (1994), 
Markon and Kirk (1994), and Pacific Meridian Resources 

(1995). Of these studies, quantitative accuracy assessments 
were performed by Fleming (1988), Felix and Binney (1989), 
Stow et al. (1989), and Pacific Meridian Resources (1995). 
Positional accuracy of field-collected training and reference 
data was either unknown or unstated in these studies. Uncer- 
tainty in the positional accuracy of field data (training or ref- 
erence) has been one of the biggest obstacles to mapping 
remote, undeveloped areas. Positional error in reference data 
is a source of classification confusion (Congalton and Green, 
1993) and can cause conservative bias in an accuracy assess- 
ment due to co-registration problems between reference data 
and map data (Verbyla and Hammond, 1995). Therefore, it is 
important that any field-collected data be positionally accu- 
rate. 

Methods 
Sampllng Issues and Strategy 
The goal of the reference data collection phase of our accu- 
racy assessment was to adopt methods that would result in 
reference data that were logistically feasible, spatially accu- 
rate, and sampled in a statistically sound manner. The un- 
developed nature of the Kuparuk River region required the 
use of a helicopter to collect ground-truth information. Our 
sampling strategy was planned around our need to pre-select 
sampling location coordinates so that we could locate each 
site using a helicopter and a GPS unit. 

Because positional errors in the reference data and the 
map data can cause bias in estimates of classification accu- 
racy, it is important to consider potential and actual posi- 
tional error when planning ground-truth data collection. The 
positional accuracy of our reference data was going to de- 
pend on the positional accuracy of the GPS unit we would be 
using. Through a collaborative effort with scientists at the 
U.S. Department of the Interior Bureau of Land Management 
(BLM), we were able to use a' Y-Code GPS receiver (Y-Code is 
restricted to government use through encryption). The unit 
provided by the BLM was a Rockwell Precision Lightweight 
Global Positioning System Receiver (PLGR). The Y-Code pro- 
vides an accuracy of 22 metres at Zdistance root-mean- 
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Plate 1. Landcover map of the Kuparuk River watershed and surrounding area. The map shown here 
includes changes that were made based on the results of the accuracy assessment. 
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Figure 2. The location of the eight 
transects of the sampling strategy 
and the 178 sites sampled in the 
field with reference to the water- 
shed boundary. 

squared [2drms - i.e., 95 percent confidence interval (Federal 
Radionavigation Plan, 1994)l. This unit also had Wide Area 
GPS Enhancements (WAGE) which increased its accuracy to 4 
metres circular error probable (50 percent confidence level). 
Collaboration with the BLM was not absolutely confirmed un- 
til just prior to our data collection phase. For this reason, we 
planned our sampling strategy around the possible use of a 
CIA Code GPS receiver, which has a horizontal accuracy no 
worse than 100 metres at 2drms. The difference in accuracy 
between the two GPS technologies means a substantial differ- 
ence in the accuracy of data and thus can influence the 
choice of sampling unit used in a sampling strategy. The use 
of a helicopter hindered the use of other techniques that can 
substantially improve data collected with a C/A Code re- 
ceiver. 

Choices made in creating a sampling strategy can affect 
the reliability of accuracy assessments (Congalton, 1991; 
Janssen and van der Wel, 1994). Understanding such effects 
is important for interpreting accuracy assessment results. The 
three major components of a sampling strategy are (1) the 
sampling unit (e.g., pixels or polygons), (2) the sampling de- 
sign (e.g., random sampling), and (3) the sample size. Our 

choice in each of these components was balanced between 
logistics and the effect that it would have on estimates of 
classification accuracy (e.g., bias). 

The first step in devising the sampling strategy was to 
determine the sampling unit. For maps derived from satellite 
data, the ideal sampling unit is the individual pixel (Janssen 
and van der Wel, 1994). However, the accuracy of a CIA 
Code GPS receiver combined with the positional accuracy of 
the map itself could add a potentially high level of uncer- 
tainty in locating individual pixels on the ground. Such un- 
certainty in our reference data set was unacceptable. There- 
fore, we used a sampling unit of 3 by 3 blocks of pixels with 
the same land-cover class. This criterion would allow for GPS 
receiver imprecision when trying to compare reference data 
with map data. With a sampling unit of this size, we could 
minimize bias caused by co-registration errors. 

The second component to determine was the sampling 
design. Theoretically, the statistically ideal design would be 
either a simple random sample or a stratified random sample 
(Hord and Brooner, 1976; Hay, 1979; Congalton, 1988). How- 
ever, logistical constraints often prevent the use of ideal sam- 
pling designs and many spatially explicit adaptations have 
been introduced, including systematic sampling (Berry and 
Baker, 1968; Thompson, 1992), stratified systematic una- 
ligned sampling (Berry and Baker, 1968), cluster sampling 
(Thompson, 1992), and transect sampling (Thompson, 1992). 

To maximize the use of limited helicopter time, we im- 
plemented a stratified systematic transect-based sampling de- 
sign. Sampling was stratified within map categories, and 
transects were systematically selected throughout the water- 
shed. Flying along transects is far more efficient than flying 
to random sites. Eight transects were identified for use in the 
sampling effort (Figure 2): three equally spaced transects run- 
ning north-south and five equally spaced transects running 
east-west. The interval between transects one, two, and three 
was 35 minutes of longitude (approximately 22.5 km). The 
interval between the remaining five transects was 25 minutes 
of latitude (approximately 46 km). The transects were spaced 
to encompass the widest range of physiographic regions, veg- 
etation, and spectral reflectance within the watershed. 

Using a randomly selected starting point between 0 and 
500 m from the start of each transect, 3 by 3 blocks every 
250 metres were analyzed for homogeneity; using this inter- 
val prevented overlap between 3 by 3 blocks of 50-m2 pixels. 
Locations that met the homogeneity criterion were consid- 
ered "potential" sites, because the analysis was likely to pro- 
duce more sites than were needed for a sample. We planned 
on randomly sampling hom this pool of potential sites to ob- 
tain our sample set. 

The final component of the sampling strategy was to de- 
termine the sample size. For estimating overall classification 
accuracy, a minimum of 50 samples is recommended for 
maps with less than a dozen categories (Hay, 1979; Congal- 
ton, 1991). However, if each category's accuracy is to be esti- 
mated, 50 sample sites per category is desirable. Based on 
the planned uses of the map, we felt that the accuracy of in- 
dividual categories should be available to map users. How- 
ever, we estimated that, under optimal field conditions, 225 
to 250 sites could be visited. Based on this, we set the mini- 
mum sample size per category at 30 and concentrated the re- 
maining samples in the most important categories, MNT 
(Moist Nonacidic Tundra) and MAT (Moist Acidic Tundra). 
We determined the sample size of these two categories on 
the basis of their percentage occurrence on the map relative 
to the overall sample size. For example, 38.9 percent of the 
watershed was covered by MNT; therefore, 87 (38.9 percent of 
225) was the number of samples in this category. Stratifying 
the sample in this manner would allow for sample sizes 
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TABLE 1. RESULTS OF THE SAMPL~NG STRATEGY. POTENTIAL SITES ARE SITES 
ALONG THE TRANSECTS THAT MET THE HOMOGENEITY CRITERIA. THE SAMPLE SET 

WAS DERIVED BY RANDOMLY SAMPLING POTENTIAL SITES OR FINDING MORE 
POTENTIAL SITES WHEN A CLASS WAS UNDER-REPRESENTED 

Land-Cover Category Potential Sites Sample Set 

Barrens 7 1 7  
MNT 341 87 
MAT 128 69 
Shrublands 22 30 
Wet tundra 10 30 
Water 61 30 

Total 569 263 

large enough to produce meaningful accuracy estimates in all 
categories and more statistically sound estimates for the MNT 
and MAT categories. 

Based on the sampling strategy, we used Environmental 
Systems Research Institute's (ESRI) ArcIInfo geographic infor- 
mation system (GIS) software package to derive a set of po- 
tential sites that met our homogeneity criterion (Table l). 
The less common land-cover categories - Barrens, Wet tun- 
dra, and Shrublands - had fewer than 30 potential sites. To 
increase the number of potential sites in these categories, the 
initial spacing requirement was removed and every pixel 
along each transect that fell into one of these categories was 
analyzed for 3- by 3-block homogeneity. This introduced the 
possibility of spatial autocorrelation between samples in 
these categories which is a potential source of bias. The re- 
maining three categories were randomly sampled to meet tar- 
geted sample sizes. The class counts for the sample set are 
shown in Table 1. The minimum of 30 samples was not 
achieved in the Barrens category. However, this was deemed 
acceptable because it is a spectrally distinct class and un- 
likely to be confused with other classes. 

Data Collection 
Waypoint data (X, Y coordinates with unique site identifica- 
tion numbers) for the 263 samples sites were loaded into the 
PLGR's memory. Using the waypoint information, azimuth 
and range data were constantly being calculated and were 
used to guide the helicopter to the exact position of each 
sample site. For the majority of sample sites, ground-truth 
evaluations were made from the landing point. The primary 
land-cover type in a 25-metre radius from the helicopter was 
recorded. If other land-cover types covered more than 30 
percent of the observation area,-then secondary and possibly 
tertiary land-cover was also recorded. It is impossible to 
truly assess dominance of vegetation types by visual inspec- 
tion of a 25-m radius circle from a single observation point. 
Therefore, error in classifying land cover at sample sites is 
an unknown source of bias when estimating classification ac- 
curacy. However, a simple classification scheme and expert 
knowledge of the vegetation mitigates some of this uncer- 
tainty. It is important to note that the analysis of errors was 
done by comparing the ground-truth data to the center pixel 
of each 3 by 3 area selected from the map. 

Error Matrix Analysis 
An error matrix (Story and Congalton, 1986; Congalton, 
1991) was used to calculate overall classification accuracy 
(P), a confidence interval for P, producer's accuracy, and 
user's accuracy. P is a simple, intuitive measure of the pro- 
portion of total sampling units that were correctly classified; 
it indicates the overall probability that a unit on the ground 
was correctly classified. User's accuracy is a measure of com- 
mission errors, indicating the probability that a unit within 
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an individual category is correctly classified. Producer's ac- 
curacy is a measure of omission errors, indicating the proba- 
bility that a reference data sample is correctly classified. It is 
useful for the map producer because it measures the degree 
to which a land-cover type on the earth can be distinguished 
and mapped using remote sensing data. 

Another widely used measure for estimating overall clas- 
sification accuracy has been the Kappa coefficient of agree- 
ment (Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 
1986). The calculation of Kappa attempts to remove chance 
agreement from estimates of classification accuracy by incor- 
porating the row and column totals of the error matrix (Co- 
hen, 1960). Recently, Foody (1992) has shown that Kappa 
tends to over-account the level of chance agreement. There- 
fore, Kappa will consistently underestimate the overall clas- 
sification accuracy. Ma and Redmond (1995) expanded upon 
Foody's (1992) work and presented a Kappa-like statistic, 
Tau (T), which they argue is a more precise measure of accu- 
racy that removes chance agreement from the estimate of 
classification accuracy. In our analysis, we have adopted the 
case of T,, which is appropriate when an error matrix is de- 
rived from a classification that had equal possibilities of 
group membership, a priori. Confidence intervals were also 
calculated for T,. 

Funy Sets Analysis 
Because vegetation often occurs as a mosaic, classifying the 
vegetation or land cover of an areal unit into only one class 
is often difficult or erroneous. For this reason, we also 
adopted accuracy assessment methods based on fuzzy sets 
theory (Gopal and Woodcock, 1994). Fuzzy sets theory recog- 
nizes uncertainty in the mapping process and allows for an 
areal unit to correctly fall into more than one category. While 
in the field we used Gopal and Woodcock's linguistic scale to 
assign a "fuzzy value" to each map class for each site (Table 
2). The benefit of using fuzzy sets theory is that it provides 
additional tools for analyzing map error. 

The results of assigning fuzzy values at each sample site 
were analyzed using three different functions. Following Go- 
pal and Woodcock's (1994) nomenclature, a correct classifi- 
cation is called a match, and an incorrect classification is 
called a mismatch. The first function measures the frequency 
of errors and is divided into two sub-functions: the m a x  
function and the right function. Frequency tabulations for the 
number of matches under each function result in a measure 
of overall classification accuracy. The m a x  function is a 
more conservative measure of accuracy than the right func- 
tion. The m a x  function measures how frequently the mapped 
class is the best classification - indicated by the highest 
fuzzy value being the same as that of the classification. The 
right function measures how frequently the mapped class 

TABLE 2. LINGUISTIC SCALE OR "FUZZY VALUES" USED IN  EXPERT EVALUATION 
OF LAND COVER AT EACH SAMPLE SITE (GOPAL A N D  WOODCOCK, 1994) 

Value Description 

1 Absolutely wrong (Very Wrong): This answer is absolutely 
unacceptable. 

2 Understandable but wrong (Not Right): Not a good answer. 
There is something about the site that makes the answer 
understandable, but there is clearly a better answer. This 
answer would pose a problem to users of the map. 

3 Reasonable or acceptable answer (Right): Maybe not the best 
possible answer but it is acceptable; this answer does not pose 
a problem to the user. 

4 Good answer (Very Right): Would be happy to find this answer 
given on the map. 

5 Absolutely right (Pe$ect): No doubt about the match. 



- -- 

Reference Data 

Landsat Wet User's 
Classification Barrens MNT MAT Shrublands Tundra Water Totals Accuracy 

Barrens 11 11 100.0% 
MNT 51 6 57 89.5% 
MAT 12 38 1 5 1 74.5% 
Shrublands 2 17 19  89.5% 
Wet Tundra 2 14 16 87.5% 
Water 24 24 100.0% 
Totals 11 65 40 18 20 24 178 
Producer's Accuracy 100.0% 78.5% 95.0% 94.4% 70.0% 100.0% 

Classification Accuracy: P = 87.08% 95% confidence interval for P: 82.07 - 91.95% 
T, = 84.49% 95% confidence interval for T,: 78.73 - 90.25% 

was given a right or better fuzzy value (i.e., three, four, or 
five]. This function is more optimistic than the max function 
because a match does not have to be the highest fuzzy value. 

The usefulness of the max and right functions lies in the 
calculation of the differences between the total number of 
matches under each function. Because the right function 
measures how frequently the mapped class was given an ac- 
ceptable or higher fuzzy value, the improvement of the right 
over the max function identifies the percentage of cases that 
had an acceptable answer but not the best answer. If the 
amount of improvement is considerable, then even though 
the max function indicates a category to be a problem for the 
map, the right function indicates that the effect on the map 
user may not be as large as the max function suggests (Gopal 
and Woodcock, 1994). 

The second function is the difference function, a mea- 
sure of the magnitude of correctness or incorrectness of a 
sample site. This function also indicates the degree of ambi- 
guity or heterogeneity identified in land cover for each class. 
A frequency count is tabulated for each magnitude level of 
correctness or incorrectness, both for the entire map and for 
individual categories. This function is calculated by subtract- 
ing the fuzzy value assigned to the mapped class from the 
highest assigned fuzzy value among all the other classes. The 
resulting difference value can range between -4 and +4. For 
example, when a site's mapped class is given a fuzzy ranking 
of 5 and all other classes are given fuzzy values of 1, then 
the difference is 4. Positive difference values occur when a 
site is classified correctly and vice versa for negative differ- 
ence values. We have slightly modified the analysis of the 
difference function as presented by Gopal and Woodcock 
(1994). Instead of calculating the arithmetic mean for each 
category as a whole, we calculated the arithmetic mean for 
the mismatches and matches within each category separately. 
The arithmetic mean of mismatches can range from -4 to 
-1 and the arithmetic mean of matches can range from 0 to 
+4. This alteration allows for the gleaning of more informa- 
tion on the degree of incorrectness and correctness within 
each land-cover class. 

The third function is the membership function, a mea- 
sure of the number of "sets" to which a sample site belongs. 
The purpose of this function is to analyze the source of er- 
rors. A fuzzy value of three or better means that the site is a 
member of that class' set. Because more than one class can 
have a fuzzy value of 3 or better, a site can have multiple 
set memberships; in theory, a site can be a member of zero 
through all defined sets (map classes). The membership func- 
tion tabulates the number of cases that fall into a given mem- 
bership category. For example, if a site has a fuzzy value of 4 
for one class, a fuzzy value of 3 for another, and a fuzzy 
value of 1 for the remaining classes, then that case falls into 
membership category 2. Within set membership categories, 

the number of matches and mismatches - according to the 
max function - is indicated. The usefulness of the mem- 
bership function is that it aids in understanding possible 
sources of errors in a map by indicating the nature of the en- 
vironment in which errors are occurring. This function can 
help identify whether map errors occurred in ambiguous 
(i.e., heterogeneous) areas or if the classification performed 
poorly in unambiguous (i.e., homogeneous) areas. 

Map Homogeneity Analysis 
A study by Hammond and Verbyla (1996) showed that 
choosing a homogeneous, multiple-pixel sampling unit could 
introduce a considerable amount of "o~timistic" bias (i.e., 
overestimation) in estimates of classification accuracy.-How- 
ever, the degree of bias depends on the degree of homogene- 
ity in the map. Likewise, the degree of optimistic bias for 
accuracy estimates for individual land-cover classes will vary 
with the degree of homogeneity within each class. To gain a 
sense of the amount of optimistic bias caused by our sam- 
pling unit, we analyzed the homogeneity of the map using 
two different definitions of map homogeneity. First we ana- 
lyzed the map for the amount of area covered by homogene- 
ous 3- by 3-cell blocks. Second, we analyzed the map for the 
amount of area covered by continuous polygons of any shape 
that were greater than or equal to the area covered by nine 
pixels. This less-restrictive definition would allow identifica- 
tion of non-symmetrical homogeneous areas. We also ana- 
lyzed the homogeneity of individual classes. 

Results 
Due to helicopter difficulties and poor weather conditions, 
transects one and four were not visited. To maintain the de- 
sired ratio of samples to land-cover classes, the field team 
randomly eliminated sites from the remaining transects. This 
resulted in a sample size of 178 sites out of the 263 targeted 
(Figure 2). The number of sites sampled in each land-cover 
class is listed in the Totals column of the error matrix (Table 
3). Elimination of all samples along transect one and four po- 
tentially introduced major systematic bias into the sampling 
design, especially the lack of samples in the western portion 
of the watershed. However, this is unlikely to be a large 
problem for two reasons. First, the major trend in landscape 
variation within the watershed is north-south. Samples col- 
lected along transects two and three adequately cover this 
gradient. Second, there were no large, unique landscape 
types in the western area of the watershed that were not 
sampled elsewhere. 

Based on the error matrix, the probability that any given 
location on the map is correct (P) is 87.1 percent with a 95 
percent confidence interval of 82.1 to 92.0 percent. The cen- 
tral diagonal of the matrix highlights correctly classified 
cases. Eliminating chance agreement, the probability that any 
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TABLE 4. RESULTS OF THE MAX AND RIGHT FUNCTIONS. IMPROVEMENT COLUMN ~NDICATES THE DIFFERENCE IN ACCURACY BETWEEN THE RIGHT FUNCTION AND THE MAX 
FUNCTION 

1 Map 
Class 

Sample Max (M) - Best Answer Right [R) - Correct Improvement 
Sites Matches Mismatches Matches Mismatches (R-M) 

Barrens 11 11 100% 0 0% 11 100% 0 0% 0 0% 
MNT 57 5 1 89% 6 11% 5 2 91% 5 9 % 1 2 % 
MAT 5 1 38 75% 13 25% 39 76% 12 24% 1 2% 
Shrublands 19 17 89% 2 11% 18 95% 1 5 % 1 5% 
Wet Tundra 16 14 88% 2 13% 15 94% 1 6% 1 6% 
Water 24 24 100% 0 0% 24 100% 0 0% 0 0% 

Total 178 155 87% 2 3 13% 159 89% 19 11% 4 2% 

given point on the map is correct (T,) is 84.5 percent with a 
95 percent confidence interval of 78.7 to 90.3 percent. All 
measures of producer's and user's accuracy were greater than 
70 percent; only MAT had a user's accuracy below 80 percent 
and only MNT and Wet tundra had a producer's accuracy be- 
low 80 percent. 

The categories of greatest concern, MNT and MAT, had 
user's accuracy of 89.5 percent and 74.5 percent, respec- 
tively, and producer's accuracy of 78.5 percent and 95 per- 
cent, respectively. All misclassifications in the MNT class 
were identified as Wet tundra on the ground, and all but one 
of the sites that were misclassified in the MAT class were 
identified as MNT on the ground. This accounts for 18 out of 
the 23 sample sites that were misclassified, indicating a pat- 
tern of non-random classification errors within these catego- 
ries. - - -  

The results of the max and right functions are shown in 
Table 4. The max function indicates an overall accuracy of 
87 percent, while the right function indicates an accuracy of 
89 percent. The improvement column shows a 2 percent dif- 
ference between the max and right functions. The range of 
improvement for individual categories was between 2 per- 
cent and 6 percent. 

The results of the difference function can be found in 
Table 5.  Sixty percent of the sites had a difference value of 
+4, which indicates that these sites were classified perfectly. 
Another 19 percent of the sites had difference values of ei- 
ther +2 or +3, which indicates that the classification of these 
sites was highly correct. Nine percent of the sites were mar- 
ginally correct, with a difference value of 0 or + 1  more than 
one best answer. Another 6 percent of the sites were incor- 
rect, with difference values of either -1 or -2. The remain- 
ing 6 percent of the sites were very incorrect or perfectly 
incorrect, with values of either -3 or -4, respectively. 

Also found in Table 5 are the arithmetic means of the 
mismatches and the matches. These values were calculated 
for the map as a whole and for each map class. For individ- 

ual map classes, only one class (MNT) had an arithmetic 
mean of mismatches below -3, with the remaining five clas- 
ses ranging between 0 and approximately -2. The arithmetic 
mean of matches for the six map classes ranged from be- 
tween +4 and approximately +3. Wet tundra had the lowest 
arithmetic mean of matches at 2.79. 

The results of the membership function can be found in 
Table 6. There were no sites that were members in zero sets 
or in more than two sets. Eighty-seven percent of all samples 
were members of only one set, and the remaining 13 percent 
were members of two sets. Of the 155 sites with single set 
membership, 138 (89 percent) were correctly classified. Of 
the 23 sites with multiple set memberships, 17  (73 percent) 
were classified correctly. Of the 23 samples classified incor- 
rectly, 1 7  had single set membership and six had multiple 
set memberships. 

Results of the analysis of map homogeneity are listed in 
Table 7. Homogeneity analysis using the first definition de- 
termined that approximately 22 percent of the watershed's 
pixels were at the center of a 3 by 3 homogeneous block of 
cells. Analysis using the second definition revealed that ap- 
proximately 82 percent of the watershed was covered by 
continuous land-cover areas that were greater than or equal 
to the area of nine pixels. Analyzing the homogeneity of in- 
dividual categories revealed that the Wet tundra and Shrub- 
lands categories were most heterogeneous in  nature, while 
the MNT, Water, and MAT categories were most homogeneous 
in nature. 

Discussion 
Overall Classification Accuracy 
For a map derived from satellite imagery, the measures of 
overall classification accuracy (87.1 percent) indicates that, 
through our classification method, we were generally able to 
correctly distinguish map classes. The results of our accuracy 
assessment compare favorably with the few accuracy assess- 

TABLE 5. RESULTS OF THE DIFFERENCE FUNCTION, SHOWING THE FREQUENCY A N D  MAGNITUDE OF MISMATCHES AND MATCHES BASED ON THE MAX FUNCTION 

Mismatches Matches 

Map Class Sites -4 -3 -2 - 1 0 1 2 3 4 

Arithmetic Arithmetic 
Mean of Mean of 

Mismatches Matches 

Barrens 11 0 0 0 0 0 0 0 0 11 0.00 4.00 
MNT 5 7 4 1 0 1 7 1 9 5 2 9 -3.33 2.94 
MAT 51 0 6 3 4 2 0 5 4 27 -2.15 3.42 
Shrublands 19 0 1 0 1 0 3 3 1 10 -2.00 3.06 
Wet Tundra 16 0 0 1 1 1 1 4 2 6 -1.50 2.79 
Water 24 0 0 0 0 0 0 0 0 24 0.00 4.00 

Total 178 4 8 4 7 10 5 2 1 12 107 -2.39 3.30 

% of Total 2% 4% 2% 4% 6% 3% 12% 7% 60% 
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TABLE 6. RESULTS OF THE MEMBERSHIP FUNCTION, SHOWING THE DISTRIBUTION OF ALL SAMPLE SITES (T), ~ N C L U D ~ N G  A BREAKDOWN OF MATCHES ( M )  AND 

MISMATCHES ( N ) ,  WITHIN MEMBERSHIP CATEGORIES (USING THE MAX FUNCTION) 

Membership 

1 2 

Map Class Sites T M N T M N 

Barrens 11 11 11 0 0 0 0 
MNT 57 47 42 5 10  9 1 
MAT 5 1 44 34 10 7 4 3 
Shrublands 1 9  15  14  1 4 3 1 
Wet tundra 16 14  1 3  1 2 1 1 
Water 24 24 24 0 0 0 0 

Total 178 155 138 1 7  2 3 1 7  6 

% of Total Sites 87.08% 77.53% 9.55% 12.92% 9.55% 3.37% 

ments that have been performed for Landsat-derived maps of 
remote Alaskan landscapes. Fleming (1988) used training set 
samples as reference data and estimated a P of 78.2 percent 
for a land-cover classification of Kanuti National Wildlife 
Refuge. Felix and Binney (1989) calculated the accuracy of a 
vegetation map of the Arctic National Wildlife Refuge 
(ANWR) to be 37 percent. More recently, Jorgenson et al. 
(1994) found their land-cover map of the coastal plain of 
ANWR to have a P of 6 3  percent, and Pacific Meridian Re- 
sources (1995) found their land-cover map of the western 
portion of the National Petroleum Reserve to have a P of 84 
percent. 

Using the results of the fuzzy sets analysis, the overall 
classification accuracy was analyzed in more detail. The im- 
provement of the right function over the max function was 
small. This shows that most errors were of significance to the 
user. Antithetically, 2 percent of the map's error is not likely 
to have a strong impact on map users. The results of the dif- 
ference function indicate that 79 percent of the map was 
highly or perfectly correct (difference values of +2 to +5). 
This implies that the classification scheme performed very 
well for a large portion of the mapped area, and that in gen- 
eral the map classes were well-defined and easy to distin- 
guish from one another. This implication is reinforced by the 
overall arithmetic mean of matches (3.3), which indicates 
that matches were on average very right or perfect. Of the to- 
tal set of sample sites, 22 (13 percent) appear to have consid- 
erable levels of land-cover heterogeneity (i.e., difference 
values between +1 and -1); of these, 15 were mapped cor- 
rectly. Because there was more than one right answer for 
these sites, the classification given at these sites does not 
pose a serious problem for map users. Based on these num- 
bers, sample sites with mixed land cover appear to be classi- 

TABLE 7. RESULTS OF MAP HOMOGENEITY ANALYSIS FOR I N D I V I D U A L  CATEGORIES 
A N D  THE OVERALL MAP (I.E., WATERSHED) 

Percent of area covered by homogeneous 
units 

3 by 3 Blocks* Continuous Areas* * 

Barrens 16.5% 
MNT 35.5% 
MAT 17.6% 
Shrublands 6.4% 
Wet tundra 2.7% 
Water 33.5% 

Watershed 22.4% 82.1% 

"First definition of map homogeneity - 3 by 3 square blocks. 
**Second definition of map homogeneity - continuous area, nine 
cells or more, any shape. 

fied relatively well. Conversely, 6 percent of the sample sites 
had a high degree of classification error (i.e., difference val- 
ues of -3 or -4), despite relatively homogeneous land cover. 

The membership function contributes additional infor- 
mation about the performance of the classification. First, 87 
percent of the sample sites had single set membership which 
indicates that the area being mapped is fairly homogeneous 
with respect to map classes. Second, the results also suggest 
that the classification performed relatively well at sample 
sites with both homogeneous and heterogeneous land cover. 
Third, when errors did occur, they were most often at sites 
with relative homogeneity (17 of 23). This shows once again 
that, when errors did occur, they could be of considerable 
concern to the map user. 

Category Accuracy 
The more specific measures of category accuracy indicate 
that, generally, the classification performed well in distin- 
guishing the differences between all land-cover classes. Bar- 
rens, Shrublands, and Water categories all had very high 
producer's and user's accuracy. This is likely to be in part 
due to their spectral distinctiveness. The producer's and 
user's accuracy values also indicate that the classification 
method had the most difficulty in separating the MNT, MAT, 
and Wet tundra categories. 

The errors in the MNT and MAT categories were of 
greatest concern to us and other map users. Ten of 13 mis- 
matches in the MNT category have only single set member- 
ship. This indicates that classification errors in this category 
tended to occur in homogeneous sites. Based on the spatial 
occurrence of these errors and our knowledge of the North 
Slope region, we determined that these errors occurred pri- 
marily in a moist nonacidic and moist acidic tundra ecotone 
in the northern foothills. Although dominated by plant taxa 
characteristic of moist nonacidic plant communities (Walker 
et al., 1994), these misclassified sites also had generally well- 
developed tussocks (Eriophorum vaginatum) and high cover 
of willows, making them structurally and spectrally similar 
to MAT. In the MNT category, five of six errors had only sin- 
gle set membership, which indicates that most errors oc- 
curred in homogeneous sites. Although all of these sites had 
large amounts of standing water and species characteristic of 
Wet tundra, they also had a dense sedge cover that made 
them spectrally similar to MNT. 

Performing spectral analysis based on the results of the 
accuracy assessment, we attempted to fix classification errors 
through refinement of the spectral definitions of each prob- 
lem class. Areas that were mapped as MNT but were ground- 
truthed as Wet tundra did not appear to have spectral dis- 
tinction, and no adjustments we& made. s ow ever, we were 
able to better delineate the spectral boundary between MAT 
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and MNT. A map-wide spectral redefinition of the spectral 
boundary between these two classes resulted in  the reclassifi- 
cation of half of the samples that were MAT on the ground 
but misclassified as MNT. This redefinition did not alter the 
classification of sample sites that were correctly classified in  
the MAT and MNT categories. It is likely, but uncertain, that 
this adjustment improved the accuracy of the MAT and MNT 
categories and the overall classification. 

Confounding Issues of the Sampling Strategy 
Several facets of the sampling strategy affected the reliability 
of our results. The facet with the largest effect on our results 
was the sampling unit. Due to optimistic bias caused by the 
sampling unit, our estimates of P and T, can only be applied 
reliably to the 22 percent of the watershed that is covered by 
3 by 3 blocks with homogeneous land cover. As with P and 
T,, user's and producer's accuracy can only be applied relia- 
bly to the amount of area in  each category that was covered 
by 3 by 3 homogeneous blocks (e.g., the accuracy of MNT 
applies to 35.5 percent). The results of the less-restrictive 
analysis of map homogeneity (82 percent homogeneous by 
definition) appears to indicate that the optimistic bias i n  the 
accuracy estimates is not as large as one would expect based 
on the initial analysis of map homogeneity. However, this 
should not be over-emphasized because this analysis is based 
on a loose definition of homogeneity, which includes linear 
features and allows for island polygons within homogeneous 
areas. 

Another facet of the sampling methods which has an  ef- 
fect on our estimates of accuracy is the sampling design. 
Some researchers such as Congalton (1988) and Stehman 
(1992) have discussed the fact that the estimated variance, 
and thus confidence intervals, will be biased when based on 
systematic sampling designs. Also, Congalton (1988) dis- 
cussed the potential of bias d u e  to systematically sampling a 
data set with periodicity. The use of transects with irregular 
spacing of samples avoids regularities i n  the data, hidden or 
otherwise. However, the confidence intervals calculated for 
the accuracy estimates are likely to be based on a biased esti- 
mate of variance. 

Final sample sizes of individual categories are the last 
part of the sampling strategy affecting the usefulness of our 
accuracy estimates. The final sample size in  all but two cate- 
gories was below 30. Due to this, estimates of user's and pro- 
ducer's accuracy have a greater chance of considerably over- 
or under-estimating the true values. The MNT and MAT cate- 
gories had sample sizes large enough to have statistically re- 
liable estimates of user's and producer's accuracy. Although 
the remaining four categories do not have statistically reli- 
able estimates of user's and producer's accuracy, they can 
still be considered general indicators of their true accuracy. 

Methodological Advantages 
The methods used in  the accuracy assessment contributed to 
obtaining meaningful results. The use of a PLGR and effec- 
tively planned sampling strategy produced a spatially accu- 
rate reference data set. The sampling strategy also minimized 
bias while maximizing resources. The use of fuzzy methods 
allowed for a more realistic field observation method, and 
the combination of fuzzy sets with the error matrix lent itself 
to a more precise analysis of the nature and source of classi- 
fication errors. 

The results of the accuracy assessment indicate a fairly 
accurate image classification. Several factors contributed to 
this, including few map categories, the generally flat or gen- 
tly rolling landscape, the simple vegetation canopy, prior 
knowledge, and previous experience with two Landsat MSS- 
derived classifications within the basin (Walker and Ace- 
vedo, 1987; D.A. Walker, unpublished data, 1985). Probably 

the most important factor was the development of a classifi- 
cation that represented spectrally distinct and ecologically 
meaningful land-cover classes based on detailed phytosocio- 
logical information (Walker et a]., 1994). 

Conclusions 

The accuracy assessment indicates that the classification of 
the Kuparuk River basin was highly accurate and performed 
relatively well in both homogeneous and heterogeneous ar- 
eas. However, the estimates are likely to be optimistically bi- 
ased and can only be applied reliably to the 22 percent of the 
watershed covered by 3 by 3 homogeneous blocks. 
All of the accuracy estimates for the individual categories in- 
dicate mid to high levels of accuracy. However, the statistical 
reliability of accuracy estimates for all but the MNT and MAT 
categories are affected by small sample sizes. Also, all of 
these estimates are affected by optimistic bias. Despite statis- 
tical unreliability and potential bias, the estimates of individ- 
ual category accuracy are still useful indicators of true 
accuracy. 
The majority of classification errors occurred in the MAT and 
MNT. Based on our analysis of errors, we determined that we 
could not correct the errors between Wet tundra and MNT. 
However, we did redefine the spectral boundary between MAT 
and the MNT classes, which changed the classification of half 
of these sample sites to MAT. This most likely improved the 
classification. 
The high accuracy of the classiiication and the meaningful- 
ness of the accuracy assessment's results are attributable to 
the following factors: a well-planned sampling strategy, spa- 
tially accurate reference data, a simple and spectrally distinct 
classification based on detailed phytosociological informa- 
tion, and prior knowledge and experience in creating land- 
cover maps for the region. 
The combined use of fuzzy sets theory and an error matrix al- 
lowed for a more precise analysis of the classification accu- 
racy and its errors. This gave greater insight into classifica- 
tion reliability and usefulness than either method would have 
if used alone. 
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